Solveeit Logo

Question

Question: A proton and a deutron both having the same kinetic energy, enter perpendicularly into a uniform mag...

A proton and a deutron both having the same kinetic energy, enter perpendicularly into a uniform magnetic field B. For motion of proton and deutron on circular path of radius RpR _ { p } and RdR _ { d } respectively, the correct statement is

A

Rd=2RpR _ { d } = \sqrt { 2 } R _ { p }

B

Rd=Rp/2R _ { d } = R _ { p } / \sqrt { 2 }

C

Rd=RpR _ { d } = R _ { p }

D

Rd=2RpR _ { d } = 2 R _ { p }

Answer

Rd=2RpR _ { d } = \sqrt { 2 } R _ { p }

Explanation

Solution

mv2R=qvB\frac { m v ^ { 2 } } { R } = q v B. For proton

Rp=mvqB=2mpEqBR _ { p } = \frac { m v } { q B } = \frac { \sqrt { 2 m _ { p } E } } { q B }

and for deuteron Rd=2mdEqBR _ { d } = \frac { \sqrt { 2 m _ { d } E } } { q B }

RdRp=mdmp=2Rd=2Rp\Rightarrow \frac { R _ { d } } { R _ { p } } = \sqrt { \frac { m _ { d } } { m _ { p } } } = \sqrt { 2 } \Rightarrow R _ { d } = \sqrt { 2 } R _ { p }