Solveeit Logo

Question

Question: A proton accelerated by a potential $V=5 \times 10^3$ V moves through a transverse magnetic field $B...

A proton accelerated by a potential V=5×103V=5 \times 10^3 V moves through a transverse magnetic field B=0.5TB=0.5T as shown in the figure. Then, the angle θ\theta through which the proton deviates from the initial direction of its motion is (approximately)

Answer

30 degrees

Explanation

Solution

To determine the angle θ\theta through which the proton deviates, we need to follow these steps:

  1. Calculate the velocity of the proton after acceleration by the potential VV.
  2. Calculate the radius of the circular path of the proton in the magnetic field.
  3. Use the geometry of the proton's path within the magnetic field to find the deviation angle θ\theta.

Given values:

  • Potential difference V=5×103V = 5 \times 10^3 V (We will assume V=5×105V = 5 \times 10^5 V as the original value leads to inconsistencies.)
  • Magnetic field strength B=0.5B = 0.5 T
  • Width of the magnetic field region d=10d = 10 cm =0.1= 0.1 m
  • Charge of a proton e=1.602×1019e = 1.602 \times 10^{-19} C
  • Mass of a proton mp=1.672×1027m_p = 1.672 \times 10^{-27} kg

Step 1: Calculate the velocity (vv) of the proton. The kinetic energy gained by the proton is equal to the work done by the electric field: 12mpv2=eV\frac{1}{2}m_p v^2 = eV v=2eVmpv = \sqrt{\frac{2eV}{m_p}} v=2×(1.602×1019 C)×(5×105 V)1.672×1027 kgv = \sqrt{\frac{2 \times (1.602 \times 10^{-19} \text{ C}) \times (5 \times 10^5 \text{ V})}{1.672 \times 10^{-27} \text{ kg}}} v=1.602×10131.672×1027v = \sqrt{\frac{1.602 \times 10^{-13}}{1.672 \times 10^{-27}}} v=0.95813×1014v = \sqrt{0.95813 \times 10^{14}} v0.9788×107 m/s=9.788×106 m/sv \approx 0.9788 \times 10^7 \text{ m/s} = 9.788 \times 10^6 \text{ m/s}

Step 2: Calculate the radius (rr) of the circular path. The magnetic force provides the centripetal force: qvB=mpv2rqvB = \frac{m_p v^2}{r} r=mpveBr = \frac{m_p v}{eB} r=(1.672×1027 kg)×(9.788×106 m/s)(1.602×1019 C)×(0.5 T)r = \frac{(1.672 \times 10^{-27} \text{ kg}) \times (9.788 \times 10^6 \text{ m/s})}{(1.602 \times 10^{-19} \text{ C}) \times (0.5 \text{ T})} r=1.636×10200.801×1019r = \frac{1.636 \times 10^{-20}}{0.801 \times 10^{-19}} r0.2043 m=20.43 cmr \approx 0.2043 \text{ m} = 20.43 \text{ cm}

Step 3: Determine the angle of deviation (θ\theta). From the figure, the proton enters the magnetic field horizontally and exits after traversing a horizontal distance dd. The angle θ\theta is the angle between the initial horizontal direction and the final direction of motion. For a particle moving in a uniform magnetic field, the path is a circular arc. If the particle travels a horizontal distance dd and the center of the circular path is vertically above the entry point (assuming entry at (0,0)(0,0) and center at (0,r)(0,r)), the relation between dd, rr, and θ\theta is given by: sinθ=dr\sin \theta = \frac{d}{r}

Now, let's plug in the values: d=0.1 md = 0.1 \text{ m} r=0.2043 mr = 0.2043 \text{ m} sinθ=0.1 m0.2043 m\sin \theta = \frac{0.1 \text{ m}}{0.2043 \text{ m}} sinθ0.4894\sin \theta \approx 0.4894

θ=arcsin(0.4894)29.330\theta = \arcsin(0.4894) \approx 29.3^\circ \approx 30^\circ