Solveeit Logo

Question

Question: A proton, a deuteron and an \(r _ { \alpha }\) denote respectively the radii of the trajectories of ...

A proton, a deuteron and an rαr _ { \alpha } denote respectively the radii of the trajectories of these particles, then

A

rα=rp<rdr _ { \alpha } = r _ { p } < r _ { d }

B

rα>rd>rpr _ { \alpha } > r _ { d } > r _ { p }

C

rα=rd>rpr _ { \alpha } = r _ { d } > r _ { p }

D

rp=rd=rαr _ { p } = r _ { d } = r _ { \alpha }

Answer

rα=rp<rdr _ { \alpha } = r _ { p } < r _ { d }

Explanation

Solution

Given that Kp=Kd=KαK _ { p } = K _ { d } = K _ { \alpha }= K (say)

We know that mp = m, md = 2m and qα=2eq _ { \alpha } = 2 e

Furtherr=2mKqBr = \frac { \sqrt { 2 m K } } { q B }rd=2(2m)KeB=2rpr _ { d } = \frac { \sqrt { 2 ( 2 m ) K } } { e B } = \sqrt { 2 } r _ { p }

and rα=rp<rdr _ { \alpha } = r _ { p } < r _ { d }