Solveeit Logo

Question

Mathematics Question on Compound Interest

A property dealer wishes to buy different houses given in the table below with some down payments and balance in EMI for 25 years. Bank charges 6% per annum compounded monthly.
Question no 65

A

(A) - (I), (B) - (II), (C) - (III), (D) - (IV)

B

(A) - (I), (B) - (III), (C) - (IV), (D) - (II)

C

(A) - (III), (B) - (IV), (C) - (I), (D) - (II)

D

(A) - (III), (B) - (IV), (C) - (II), (D) - (I)

Answer

(A) - (I), (B) - (III), (C) - (IV), (D) - (II)

Explanation

Solution

The formula for EMI is:

EMI=Loan Amount×(1+r)nr(1+r)n1\text{EMI} = \text{Loan Amount} \times \frac{(1 + r)^n \cdot r}{(1 + r)^n - 1}.

Here:

r=Annual Interest Rate12=610012=0.005r = \frac{\text{Annual Interest Rate}}{12} = \frac{6}{100 \cdot 12} = 0.005,

n=Loan Tenure in Months=25×12=300n = \text{Loan Tenure in Months} = 25 \times 12 = 300,

The given value (1.005)3000.005(1.005)3001=0.0064\frac{(1.005)^{300} \cdot 0.005}{(1.005)^{300} - 1} = 0.0064.

The EMI for each property is calculated as:

EMI=Loan Amount×0.0064\text{EMI} = \text{Loan Amount} \times 0.0064.

For Property P:

Loan Amount=45,00,0005,00,000=40,00,000\text{Loan Amount} = 45,00,000 - 5,00,000 = 40,00,000

EMI=40,00,000×0.0064=25,600\text{EMI} = 40,00,000 \times 0.0064 = 25,600

For Property Q:

Loan Amount=55,00,0005,00,000=50,00,000\text{Loan Amount} = 55,00,000 - 5,00,000 = 50,00,000

EMI=50,00,000×0.0064=32,000\text{EMI} = 50,00,000 \times 0.0064 = 32,000

For Property R:

Loan Amount=65,00,00010,00,000=55,00,000\text{Loan Amount} = 65,00,000 - 10,00,000 = 55,00,000

EMI=55,00,000×0.0064=35,200\text{EMI} = 55,00,000 \times 0.0064 = 35,200

For Property S:

Loan Amount=75,00,00015,00,000=60,00,000\text{Loan Amount} = 75,00,000 - 15,00,000 = 60,00,000

EMI=60,00,000×0.0064=38,400\text{EMI} = 60,00,000 \times 0.0064 = 38,400

Final Matching: (A) P (I) 25,600 (B) Q (III) 32,000 (C) R (IV) 35,200 (D) S (II) 38,400

Thus, the correct option is (2).