Solveeit Logo

Question

Question: A projectile is thrown into space so as to have maximum horizontal range R. Taking the point of proj...

A projectile is thrown into space so as to have maximum horizontal range R. Taking the point of projection as origin, the coordinates of the points where the speed of the particle is minimum are-

A

(R, R)

B

(R,R2)\left( R,\frac{R}{2} \right)

C

(R2,R4)\left( \frac{R}{2},\frac{R}{4} \right)

D

(R,R4)\left( R,\frac{R}{4} \right)

Answer

(R2,R4)\left( \frac{R}{2},\frac{R}{4} \right)

Explanation

Solution

Rmax = u2g\frac { u ^ { 2 } } { g } and when R is max, then

H = u2sin2452 g\frac { \mathrm { u } ^ { 2 } \sin ^ { 2 } 45 ^ { \circ } } { 2 \mathrm {~g} } = u24g\frac { u ^ { 2 } } { 4 g } = Rmax4\frac { \mathrm { R } _ { \max } } { 4 }