Solveeit Logo

Question

Question: A projectile is thrown in the upward direction making an angle of 60° with the horizontal direction,...

A projectile is thrown in the upward direction making an angle of 60° with the horizontal direction, with a velocity of 147ms1^{-1} Then the time after which inclination with the horizontal is 45°, is

A

15(3\sqrt{3} - 1)s

B

15(3\sqrt{3} + 1)s

C

7.5(3\sqrt{3} - 1)s

D

7.5(3\sqrt{3} + 1)s

Answer

7.5(3\sqrt{3} - 1)s

Explanation

Solution

Let the initial velocity of the projectile be u=147 ms1u = 147 \text{ ms}^{-1}, and the initial angle of projection with the horizontal be θ0=60\theta_0 = 60^\circ.

The horizontal component of the initial velocity is ux=ucosθ0=147cos60=147×12=73.5 ms1u_x = u \cos \theta_0 = 147 \cos 60^\circ = 147 \times \frac{1}{2} = 73.5 \text{ ms}^{-1}.

The vertical component of the initial velocity is uy=usinθ0=147sin60=147×32=73.53 ms1u_y = u \sin \theta_0 = 147 \sin 60^\circ = 147 \times \frac{\sqrt{3}}{2} = 73.5 \sqrt{3} \text{ ms}^{-1}.

In projectile motion, the horizontal component of velocity remains constant (neglecting air resistance), so the horizontal velocity at time tt is vx(t)=ux=73.5 ms1v_x(t) = u_x = 73.5 \text{ ms}^{-1}.

The vertical component of velocity changes due to gravity. Assuming the acceleration due to gravity is gg, the vertical velocity at time tt is vy(t)=uygt=73.53gtv_y(t) = u_y - gt = 73.5 \sqrt{3} - gt.

The inclination of the velocity vector with the horizontal at time tt is given by the angle θ\theta such that tanθ=vy(t)vx(t)\tan \theta = \frac{v_y(t)}{v_x(t)}.

We are looking for the time tt when the inclination with the horizontal is θf=45\theta_f = 45^\circ. So, tan45=vy(t)vx(t)\tan 45^\circ = \frac{v_y(t)}{v_x(t)}. Since tan45=1\tan 45^\circ = 1, we have vy(t)=vx(t)v_y(t) = v_x(t).

Substitute the expressions for vx(t)v_x(t) and vy(t)v_y(t): 73.53gt=73.573.5 \sqrt{3} - gt = 73.5. Let's assume g=9.8 ms2g = 9.8 \text{ ms}^{-2}.

Then the equation is 73.539.8t=73.573.5 \sqrt{3} - 9.8t = 73.5. 9.8t=73.5373.59.8t = 73.5 \sqrt{3} - 73.5 9.8t=73.5(31)9.8t = 73.5 (\sqrt{3} - 1). t=73.59.8(31)t = \frac{73.5}{9.8} (\sqrt{3} - 1). We calculate the ratio 73.59.8\frac{73.5}{9.8}: 73.59.8=735/1098/10=73598=152=7.5\frac{73.5}{9.8} = \frac{735/10}{98/10} = \frac{735}{98} = \frac{15}{2} = 7.5.

Therefore, t=7.5(31)t = 7.5 (\sqrt{3} - 1) seconds.