Solveeit Logo

Question

Question: A projectile is projected with velocity \(k v _ { e }\) in vertically upward direction from the gr...

A projectile is projected with velocity kvek v _ { e } in vertically upward direction from the ground into the space. (is escape velocity and k < 1). If air resistance is considered to be negligible then the maximum height from the centre of earth to which it can go, will be (R = radius of earth)

A

Rk2+1\frac { R } { k ^ { 2 } + 1 }

B

Rk21\frac { R } { k ^ { 2 } - 1 }

C

R1k2\frac { R } { 1 - k ^ { 2 } }

D

Rk+1\frac { R } { k + 1 }

Answer

R1k2\frac { R } { 1 - k ^ { 2 } }

Explanation

Solution

From the law of conservation of energy

Difference in potential energy between ground and maximum height = Kinetic energy at the point of projection

mgh1+h/R=12m(kve)2\frac { m g h } { 1 + h / R } = \frac { 1 } { 2 } m \left( k v _ { e } \right) ^ { 2 } =12mk2(2gR)2= \frac { 1 } { 2 } m k ^ { 2 } ( \sqrt { 2 g } R ) ^ { 2 }

[As ]

By solving height from the surface of earth h=Rk21k2h = \frac { R k ^ { 2 } } { 1 - k ^ { 2 } }

So height from the centre of earth r=R+h=R+Rk21k2r = R + h = R + \frac { R k ^ { 2 } } { 1 - k ^ { 2 } }

=R1k2= \frac { R } { 1 - k ^ { 2 } }.