Solveeit Logo

Question

Question: A projectile is projected with initial velocity \((6\widehat{i} + 8\widehat{j})m/sec.\) If g = 10 m...

A projectile is projected with initial velocity

(6i^+8j^)m/sec.(6\widehat{i} + 8\widehat{j})m/sec. If g = 10 ms–2, then horizontal range is

A

4.8 metre

B

9.6 metre

C

19.2 metre

D

14.0 metre

Answer

9.6 metre

Explanation

Solution

Initial velocity =(6i^+8J^)m/s= \left( 6\widehat{i} + 8\widehat{J} \right)m/s (given)

Magnitude of velocity of projection u=ux2+uy2u = \sqrt{u_{x}^{2} + u_{y}^{2}}

=62+82= \sqrt{6^{2} + 8^{2}}= 10 m/s

Angle of projection tanθ=uyux=86=43\tan\theta = \frac{u_{y}}{u_{x}} = \frac{8}{6} = \frac{4}{3}sinθ=45\sin\theta = \frac{4}{5}and cosθ=35\cos\theta = \frac{3}{5}

Now horizontal range R=u2sin2θgR = \frac{u^{2}\sin 2\theta}{g} rFm\sqrt { \frac { r F } { m } }

=(10)2×2×45×3510=9.6meter= \frac{(10)^{2} \times 2 \times \frac{4}{5} \times \frac{3}{5}}{10} = 9.6meter