Solveeit Logo

Question

Physics Question on Motion in a plane

A projectile is given an initial velocity of (i^+2j^)m/s(\hat{i} + 2\hat{j}) m/s, where i^\hat{i} is along the ground and j^\hat{j} is along the vertical. If g=10m/s2g = 10 m/s^2, then the equation of its trajectory is

A

y=x5x2y=x-5x^2

B

y=2x5x2y=2x-5x^2

C

4y=2x5x24y=2x-5x^2

D

4y=2x25x24y=2x-25x^2

Answer

y=2x5x2y=2x-5x^2

Explanation

Solution

Initial velocity = (i + 2j)m/s
Magnitude of initial velocity u =(1)2+(2)2=5m/s\sqrt{(1)^2+(2)^2}=\sqrt 5 m/s
Equation of trajectory of projectile is
y=xtanθgx22u2(1+tan2θ)[tanθ=yx=21=2]\, \, \, \, y=x tan \theta -\frac{gx^2}{2u^2}(1+tan^2\theta)\bigg[tan \theta=\frac{y}{x}=\frac{2}{1}=2\bigg]
y=x×210(x)22(5)2[1+(2)2]\therefore \, \, \, y=x \times 2-\frac{10(x)^2}{2(\sqrt 5)^2}[1+(2)^2]
=2x10(x2)2×5(1+4)\, \, \, \, \, \, \, \, \, \, \, \, =2x-\frac{10(x^2)}{2 \times 5}(1+4)
2x5x2\, \, \, \, \, \, \, \, \, \, \, \, 2x-5x^2