Solveeit Logo

Question

Physics Question on Gravitation

A projectile is fired vertically upwards from the surface of the Earth with a velocity kυek\upsilon _e , where υe\upsilon_e is the escape velocity and k<1k < 1 . If RR is the radius of the Earth, the maximum height to which it will rise measured from the centre of the Earth will be

A

1k2R\frac{1 - k^2}{R}

B

R1k2\frac{R}{1 - k^2}

C

R(1k2)R (1 - k^2)

D

R1+k2\frac{R}{1 + k^2}

Answer

R1k2\frac{R}{1 - k^2}

Explanation

Solution

From law of conservation of energy,
12mυ2=mgh1+hR\frac{1}{2} m \upsilon^2 = \frac{mgh}{1 + \frac{h}{R}}
υ=kυ2=k2gR\because \, \upsilon = k \upsilon_2 = k \sqrt{2gR}
12mk2.2gR=mg(rR)1+rRR\therefore \, \frac{1}{2} m k^2 . 2g R = \frac{mg(r- R)}{1 + \frac{r -R}{R}}
k2R[1+rRR]=rRk^2 R \left[ 1 + \frac{r - R}{R} \right] = r - R
k2r=rRr=R1k2k^2 r = r - R \, \Rightarrow r = \frac{R}{1 - k^2}