Solveeit Logo

Question

Physics Question on Motion in a plane

A projectile is fired at an angle of 4545^\circ with the horizontal. Elevation angle of the projectile at its highest point as seen from the point of projection, is

A

45 45^\circ

B

6060^\circ

C

tan112 \tan^{ - 1} \frac{1}{2}

D

tan1(32) \tan^{ - 1} \bigg( \frac{\sqrt 3}{2}\bigg)

Answer

tan112 \tan^{ - 1} \frac{1}{2}

Explanation

Solution

REF. Image. θ=45\theta=45^{\circ} projection speed =u=u
horizontal velocity ux=ucos45=u2ux = u c o s 45^{\circ}=\frac{ u }{\sqrt{2}}
initial vertical velocity uy =usin40=u2=\operatorname{usin} 40^{\circ}=\frac{u}{\sqrt{2}}
height max_{\max } attained H=u2sin2θ29=u2/229H =\frac{ u ^{2} \sin ^{2} \theta}{29}=\frac{ u ^{2} / 2}{29}
H=u249H =\frac{ u ^{2}}{49}
half of the range =R2=u2sin2θ29=u2sin9029=\frac{ R }{2}=\frac{ u ^{2} \sin 2 \theta}{29}=\frac{ u ^{2} \sin 90^{\circ}}{29}
R2=u229\frac{ R }{2}=\frac{ u ^{2}}{29}
elevation ϕ=tan1HR/2\phi=\tan ^{-1} \frac{ H }{ R / 2}
ϕ=tan1u2/49u2/29\phi=\tan ^{-1} \frac{ u ^{2} / 49}{ u ^{2} / 29}
Or ϕ=tan10.5\phi=\tan ^{-1} 0.5