Solveeit Logo

Question

Physics Question on projectile motion

A projectile can have the same range RR for two angles of projection. If t1t_1 and t2t_2 be the times of flights in the two cases, then the product of the two times of flights is proportional to :

A

R2R^2

B

1R2\frac{1}{R^{2}}

C

1R\frac{1}{R}

D

RR

Answer

RR

Explanation

Solution

A .projectile can have same range if angles of projection are complementary i.e., 0 and (90?θ)(90^? - \theta). Thus, in both cases : t1=2usinθg...(i)t_{1}=\frac{2u\,sin\,\theta}{g}\,...\left(i\right) t2=2usin(90?θ)gt_{2}=\frac{2u\,sin\,\left(90^{?}-\theta\right) }{g} =2ucosθg...(ii)=\frac{2u\,cos\,\theta}{g}\,...\left(ii\right) From Eqs. (i)\left(i\right) and (ii)\left(ii\right) t1t2=4u2sinθcosθg2t_{1}t_{2}=\frac{4u^{2}\,sin\,\theta cos\,\theta }{g^{2}} t1t2=2u2sin2θg2t_{1}t_{2}=\frac{2u^{2}\,sin\,2\theta }{g^{2}} =2gu2sin2θg=\frac{2}{g} \frac{u^{2}\,sin\,2\theta}{g} t1t2=2Rg(R=u2sin2θg)\therefore t_{1}t_{2}=\frac{2R}{g}\,\left(\therefore R=\frac{u^{2}\,sin\,2\theta}{g}\right) Hence, t1t2Rt_{1}t_{2}\,\propto\,R