Solveeit Logo

Question

Physics Question on Current electricity

A potentiometer wire of length 100cm100 \,cm has a resistance of 10Ω10 \,\Omega. It is connected in series with a resistance and a cell of emf 2V2 \,V and of negligible internal resistance. A source of emf 10mV10 \,mV is balanced against a length of 40cm40 \,cm of the potentiometer wire. What is the value of external resistance ?

A

790Ω790 \,\Omega

B

890Ω890 \,\Omega

C

990Ω990 \,\Omega

D

1090Ω1090 \,\Omega

Answer

790Ω790 \,\Omega

Explanation

Solution

The current in the potentiometer wire ACAC is I=210+RI=\frac{2}{10+R} The potential difference across the potentiometer wire is V=V = current ×\times resistance =210+R×10=\frac{2}{10+R} \times 10 The length of the wire is l=100cml = 100\, cm. So, the potential gradient along the wire is k=Vl=(210+R)×10100(i)k=\frac{V}{l}=\left(\frac{2}{10+R}\right)\times\frac{10}{100}\quad\ldots\left(i\right) The source of emf 10mV10\, mV is balanced against a length of 40cm40 \,cm of the potentiometer wire i.e. 10×103=k×4010 \times 10^{-3}=k \times 40 or 10×103=2(10+R)×401010 \times 10^{-3}=\frac{2}{\left(10+R\right)} \times \frac{40}{10}\quad (Using (i)(i)) or R=790ΩR=790\,\Omega.