Solveeit Logo

Question

Question: A potential difference of 50 volt is applied across an $\alpha$-particle initially at rest Find (i)...

A potential difference of 50 volt is applied across an α\alpha-particle initially at rest

Find (i) K.E acquired by α\alpha particle.

(ii) Maximum speed acquired by α\alpha particle. [NA=6×1023][N_A = 6 \times 10^{23}]

Answer

K.E = 1.6×10171.6 \times 10^{-17} J, v = 6.94×1046.94 \times 10^4 m/s

Explanation

Solution

Solution: An α\alpha-particle is a Helium nucleus, which has a charge of q=+2eq = +2e, where e=1.6×1019e = 1.6 \times 10^{-19} C is the elementary charge. The mass of an α\alpha-particle is approximately m=4 amum = 4 \text{ amu}. Using 1 amu=1.66×10271 \text{ amu} = 1.66 \times 10^{-27} kg, the mass is m4×1.66×1027m \approx 4 \times 1.66 \times 10^{-27} kg =6.64×1027= 6.64 \times 10^{-27} kg. A more precise value for the mass of an alpha particle is 6.64465724×10276.64465724 \times 10^{-27} kg. We will use m6.64×1027m \approx 6.64 \times 10^{-27} kg for the calculation.

A potential difference of V=50V = 50 volts is applied across the α\alpha-particle initially at rest. The work done by the electric field on the α\alpha-particle is W=qVW = qV. According to the work-energy theorem, the work done is equal to the change in kinetic energy. Since the initial kinetic energy is zero, the kinetic energy acquired is equal to the work done.

(i) K.E acquired by α\alpha particle: K.E.=W=qVK.E. = W = qV K.E.=(2e)×VK.E. = (2e) \times V K.E.=(2×1.6×1019 C)×(50 V)K.E. = (2 \times 1.6 \times 10^{-19} \text{ C}) \times (50 \text{ V}) K.E.=(3.2×1019 C)×(50 V)K.E. = (3.2 \times 10^{-19} \text{ C}) \times (50 \text{ V}) K.E.=160×1019K.E. = 160 \times 10^{-19} J K.E.=1.6×1017K.E. = 1.6 \times 10^{-17} J

The kinetic energy can also be expressed in electron volts (eV): K.E.=qV=(2e)×(50 V)=100 eVK.E. = qV = (2e) \times (50 \text{ V}) = 100 \text{ eV}. In Joules, 100 eV×(1.6×1019 J/eV)=1.6×1017100 \text{ eV} \times (1.6 \times 10^{-19} \text{ J/eV}) = 1.6 \times 10^{-17} J.

(ii) Maximum speed acquired by α\alpha particle: The kinetic energy is related to the speed by the formula K.E.=12mv2K.E. = \frac{1}{2}mv^2, where mm is the mass and vv is the speed. 1.6×1017 J=12×(6.64×1027 kg)×v21.6 \times 10^{-17} \text{ J} = \frac{1}{2} \times (6.64 \times 10^{-27} \text{ kg}) \times v^2 v2=2×1.6×1017 J6.64×1027 kgv^2 = \frac{2 \times 1.6 \times 10^{-17} \text{ J}}{6.64 \times 10^{-27} \text{ kg}} v2=3.2×10176.64×1027 m2/s2v^2 = \frac{3.2 \times 10^{-17}}{6.64 \times 10^{-27}} \text{ m}^2/\text{s}^2 v2=3.26.64×1017(27) m2/s2v^2 = \frac{3.2}{6.64} \times 10^{-17 - (-27)} \text{ m}^2/\text{s}^2 v2=3.26.64×1010 m2/s2v^2 = \frac{3.2}{6.64} \times 10^{10} \text{ m}^2/\text{s}^2 v20.4819×1010 m2/s2v^2 \approx 0.4819 \times 10^{10} \text{ m}^2/\text{s}^2 v248.19×108 m2/s2v^2 \approx 48.19 \times 10^8 \text{ m}^2/\text{s}^2 v=48.19×108 m/sv = \sqrt{48.19 \times 10^8} \text{ m/s} v=48.19×104 m/sv = \sqrt{48.19} \times 10^4 \text{ m/s} 48.196.942\sqrt{48.19} \approx 6.942 v6.942×104v \approx 6.942 \times 10^4 m/s

Using a more precise mass m=6.64465724×1027m = 6.64465724 \times 10^{-27} kg: v2=3.2×10176.64465724×1027=3.26.64465724×10100.48161×1010=48.161×108v^2 = \frac{3.2 \times 10^{-17}}{6.64465724 \times 10^{-27}} = \frac{3.2}{6.64465724} \times 10^{10} \approx 0.48161 \times 10^{10} = 48.161 \times 10^8 v=48.161×1046.9405×104v = \sqrt{48.161} \times 10^4 \approx 6.9405 \times 10^4 m/s. Rounding to three significant figures, v6.94×104v \approx 6.94 \times 10^4 m/s.

The final answer is K.E=1.6×1017J,v=6.94×104m/s\boxed{K.E = 1.6 \times 10^{-17} J, v = 6.94 \times 10^4 m/s}.

Explanation of the solution: (i) The kinetic energy acquired by the α\alpha-particle is equal to the work done by the electric field, which is given by K.E.=qVK.E. = qV. Substitute the charge of the α\alpha-particle (q=+2eq = +2e) and the potential difference (V=50V = 50 V) to calculate the kinetic energy in Joules. (ii) The kinetic energy is also related to the speed by the formula K.E.=12mv2K.E. = \frac{1}{2}mv^2. Use the calculated kinetic energy and the mass of the α\alpha-particle (m4m \approx 4 amu) to solve for the speed vv.

Answer: (i) K.E acquired by α\alpha particle = 1.6×10171.6 \times 10^{-17} J (or 100 eV) (ii) Maximum speed acquired by α\alpha particle = 6.94×1046.94 \times 10^4 m/s