Question
Question: A positive ion $A$ and a negative ion $B$ has charges $6.67 \times 10^{-19}C$ and $9.6 \times 10^{-1...
A positive ion A and a negative ion B has charges 6.67×10−19C and 9.6×10−10C, and masses 19.2×10−27kg and 9×10−27kg respectively. At an instant, the ions are separated by a certain distance r. At that instant the ratio of the magnitudes of electrostatic force to gravitational force is P×10−13, where the value of P is _________.
(Take 4πϵ01=9×109Nm2C−1 and universal gravitational constant as 6.67×10−11Nm2kg−2)

5.0 × 10^57
Solution
The ratio of the magnitudes of the electrostatic force to the gravitational force is given by:
FgFe=Gr2mAmB4πϵ01r2∣qAqB∣=4πϵ01G1mAmB∣qAqB∣.
Given:
- 4πϵ01=9.0×109Nm2C−1
- G=6.67×10−11Nm2kg−2
- qA=6.67×10−19C
- qB=9.6×10−10C
- mA=19.2×10−27kg
- mB=9.0×10−27kg
Step 1: Calculate the product of charges:
qAqB=6.67×10−19×9.6×10−10=6.67×9.6×10−29≈64.032×10−29=6.4032×10−28.
Step 2: Calculate the product of masses:
mAmB=19.2×10−27×9.0×10−27=172.8×10−54=1.728×10−52.
Step 3: Compute the ratio:
FgFe=(6.67×10−119.0×109)(1.728×10−526.4032×10−28).
First, compute the prefactor:
6.67×10−119.0×109≈6.679.0×1020≈1.35×1020.
Next, compute the fractional part:
1.728×10−526.4032×10−28=1.7286.4032×1024≈3.705×1024.
Multiply them:
FgFe≈1.35×1020×3.705×1024≈5.0×1044.
The problem states that the ratio is expressed as P×10−13. So, we write:
5.0×1044=P×10−13.
Thus,
P=5.0×1044×1013=5.0×1057.