Solveeit Logo

Question

Question: A positive ion $A$ and a negative ion $B$ has charges $6.67 \times 10^{-19}C$ and $9.6 \times 10^{-1...

A positive ion AA and a negative ion BB has charges 6.67×1019C6.67 \times 10^{-19}C and 9.6×1010C9.6 \times 10^{-10}C, and masses 19.2×102719.2 \times 10^{-27}kg and 9×10279 \times 10^{-27}kg respectively. At an instant, the ions are separated by a certain distance rr. At that instant the ratio of the magnitudes of electrostatic force to gravitational force is P×1013P \times 10^{-13}, where the value of PP is _________.

(Take 14πϵ0=9×109Nm2C1\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 Nm^2C^{-1} and universal gravitational constant as 6.67×1011Nm2kg26.67 \times 10^{-11} Nm^2 kg^{-2})

Answer

5.0 × 10^57

Explanation

Solution

The ratio of the magnitudes of the electrostatic force to the gravitational force is given by:

FeFg=14πϵ0qAqBr2GmAmBr2=14πϵ01GqAqBmAmB\frac{F_e}{F_g}=\frac{\frac{1}{4\pi\epsilon_0}\frac{|q_Aq_B|}{r^2}}{G\frac{m_Am_B}{r^2}}=\frac{1}{4\pi\epsilon_0}\frac{1}{G}\frac{|q_Aq_B|}{m_Am_B}.

Given:

  • 14πϵ0=9.0×109Nm2C1\frac{1}{4\pi\epsilon_0}=9.0\times10^9\,\mathrm{Nm^2C^{-1}}
  • G=6.67×1011Nm2kg2G=6.67\times10^{-11}\,\mathrm{Nm^2kg^{-2}}
  • qA=6.67×1019Cq_A=6.67\times10^{-19}\,\mathrm{C}
  • qB=9.6×1010Cq_B=9.6\times10^{-10}\,\mathrm{C}
  • mA=19.2×1027kgm_A=19.2\times10^{-27}\,\mathrm{kg}
  • mB=9.0×1027kgm_B=9.0\times10^{-27}\,\mathrm{kg}

Step 1: Calculate the product of charges:

qAqB=6.67×1019×9.6×1010=6.67×9.6×102964.032×1029=6.4032×1028q_Aq_B=6.67\times10^{-19}\times9.6\times10^{-10}=6.67\times9.6\times10^{-29}\approx64.032\times10^{-29}=6.4032\times10^{-28}.

Step 2: Calculate the product of masses:

mAmB=19.2×1027×9.0×1027=172.8×1054=1.728×1052m_Am_B=19.2\times10^{-27}\times9.0\times10^{-27}=172.8\times10^{-54}=1.728\times10^{-52}.

Step 3: Compute the ratio:

FeFg=(9.0×1096.67×1011)(6.4032×10281.728×1052)\frac{F_e}{F_g}=\left(\frac{9.0\times10^9}{6.67\times10^{-11}}\right)\left(\frac{6.4032\times10^{-28}}{1.728\times10^{-52}}\right).

First, compute the prefactor:

9.0×1096.67×10119.06.67×10201.35×1020\frac{9.0\times10^9}{6.67\times10^{-11}}\approx\frac{9.0}{6.67}\times10^{20}\approx1.35\times10^{20}.

Next, compute the fractional part:

6.4032×10281.728×1052=6.40321.728×10243.705×1024\frac{6.4032\times10^{-28}}{1.728\times10^{-52}}=\frac{6.4032}{1.728}\times10^{24}\approx3.705\times10^{24}.

Multiply them:

FeFg1.35×1020×3.705×10245.0×1044\frac{F_e}{F_g}\approx1.35\times10^{20}\times3.705\times10^{24}\approx5.0\times10^{44}.

The problem states that the ratio is expressed as P×1013P\times10^{-13}. So, we write:

5.0×1044=P×10135.0\times10^{44}=P\times10^{-13}.

Thus,

P=5.0×1044×1013=5.0×1057P=5.0\times10^{44}\times10^{13}=5.0\times10^{57}.