Solveeit Logo

Question

Physics Question on Waves

A policeman on duty detects a drop of 15%15 \% in the pitch of the horn of a motor car as it crosses him. If the velocity of sound is 330ms1330 \, m \, s^{-1} , calculate the speed of the car.

A

26.7ms126.7 \, m \, s^{-1}

B

27.6ms127.6 \, m \, s^{-1}

C

53.4ms153.4 \, m \, s^{-1}

D

54.3ms154.3 \, m \, s^{-1}

Answer

26.7ms126.7 \, m \, s^{-1}

Explanation

Solution

Here, velocity of sound, v=330ms1v = 330 \, m \, s^{-1}
Frequency of the horn = υ \upsilon
Let υc\upsilon_c be the speed of the car.
The frequency of the horn of the car heard by the policeman before it crosses him is,
υ=υ(vvvc)\upsilon' = \upsilon \left( \frac{v}{v - v_c} \right) ....(i)
and after it crosses him is
υ"=υ(vv+vc)\upsilon" = \upsilon \left( \frac{v}{v + v_c} \right) ....(ii)
Divide (ii) by (i), we get
υ"υ=ννcν+νc=330νc330+νc\frac{\upsilon"}{\upsilon'} = \frac{\nu -\nu_{c}}{\nu+\nu_{c} } = \frac{330 - \nu_{c}}{330 + \nu_{c}}
As the pitch (i.e. frequency) drops by 15%15 \% so
υ"υ=85100=1720,Thus,1720=330νc330+νc\frac{ \upsilon"}{\upsilon'} = \frac{85}{100} = \frac{17}{20} , Thus , \frac{17}{20} = \frac{330 - \nu _{c}}{330 + \nu _{c}}
5610+17υc=660020υc5610 + 17 \upsilon_{c} = 6600 - 20\upsilon_{c}
37υc=990νc=99037=26.7ms137 \upsilon_{c}=990 \, \, \therefore \, \, \nu_{c} = \frac{990}{37} = 26.7 m s^{-1}