Solveeit Logo

Question

Question: A pole is slightly inclined towards the east. At two points due west of it at distances \(a\,\,and\,...

A pole is slightly inclined towards the east. At two points due west of it at distances aandba\,\,and\,\,b, the angle of elevation of the top of the pole are αandβ\alpha \,\,and\,\,\beta respectively. The inclination of the pole to the horizon is:
A. tan1[a+bbcotαcotβ]{\tan ^{ - 1}}\left[ {\dfrac{{a + b}}{{b\cot \alpha - \cot \beta }}} \right]
B. tan1[babcotαacotβ]{\tan ^{ - 1}}\left[ {\dfrac{{b - a}}{{b\cot \alpha - acot\beta }}} \right]
C. cos1[abbcosαcosβ]{\cos ^{ - 1}}\left[ {\dfrac{{a - b}}{{b\cos \alpha - \cos \beta }}} \right]
D. sin1[abbcotαacotβ]{\sin ^{ - 1}}\left[ {\dfrac{{a - b}}{{b\cot \alpha - a\cot \beta }}} \right]

Explanation

Solution

Hint : Firstly, we will make a diagram according to the information in the question. Thereafter, we will solve and find the value of ccand hh, then find the inclined angle to get the answer.

Complete step-by-step answer :

Let ABAB be a pole CandDC\,\,and\,\,D are the points from where it is observed.
Let AB=h,BE=cAB = h,\,\,BE = c
Here, ED=aandEC=bED = a\,\,and\,\,EC = b
Now, inΔABD,atB=90o\Delta ABD,\,\,at\,\,\angle B = {90^o}, by using trigonometric ratio, we have
tanα=ABBD tanα=ABBE+ED  tan\alpha = \dfrac{{AB}}{{BD}} \\\ \tan \alpha = \dfrac{{AB}}{{BE + ED}} \\\
We will substitute the value of AB=h,BE=cAB = h,\,\,BE = cand ED=aED = a\,,we have
tanα=ha+c\tan \alpha = \dfrac{h}{{a + c}}
(a+C)tanα=h(a + C)\tan \alpha = h …..(i)
Similarly, in ΔABC,atβ=90O\Delta ABC,\,\,at\,\,\angle \beta = {90^{}}O, so by using trigonometric ratio we have
tanβ=ABBC tanβ=ABBE+EC  tan\beta = \dfrac{{AB}}{{BC}} \\\ \tan \beta = \dfrac{{AB}}{{BE + EC}} \\\
We will substitute the value of AB=h,BE=cAB = h,\,\,BE = cand EC=bEC = b,we have
tanβ=hc+b\tan \beta = \dfrac{h}{{c + b}}
(b+c)tanβ=h(b + c)\tan \beta = h ……(ii)
Now, from equation (i) and (ii), we have
(a+c)tanα=(b+c)tanβ(a + c)\tan \alpha = (b + c)\tan \beta
atanα+ctanα=btanβ+ctanβa\tan \alpha + c\tan \alpha = b\tan \beta + c\tan \beta
atanαbtanβ=ctanβctanαa\tan \alpha - b\tan \beta = c\tan \beta - c\tan \alpha
atanαbtanβ=c(tanβtanα)a\tan \alpha - b\tan \beta = c(\tan \beta - \tan \alpha )
c=atanαbtanβtanβtanα\Rightarrow c = \dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }} …….(iii)
Now, we will substitute the value of ccin equation (i), we have
h=atanα+ctanαh = a\tan \alpha + c\tan \alpha
h=atanα1+tanα(atanαbtanβtanβtanα)h = \dfrac{{a\tan \alpha }}{1} + \tan \alpha \left( {\dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}} \right)
Now, we will take LCM tanβtanα,\tan \beta - \tan \alpha ,we have
h=atanα(tanβtanα)+tanα(atanαbtanβ)tanβtanαh = \dfrac{{a\tan \alpha (\tan \beta - \tan \alpha ) + \tan \alpha (a\tan \alpha - b\tan \beta )}}{{\tan \beta - \tan \alpha }}
h=atanαtanβatan2α+atan2αbtanαtanβtanβtanαh = \dfrac{{a\tan \alpha \tan \beta - a{{\tan }^2}\alpha + a{{\tan }^2}\alpha - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}
h=atanαtanβbtanαtanβtanβtanαh = \dfrac{{a\tan \alpha \tan \beta - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}
h=atanαtanβbtanαtanβtanβtanαh = \dfrac{{a\tan \alpha \tan \beta - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}
Take tanαtanβ\tan \alpha \tan \beta common in the numerator, we have
h=tanαtanβ(ab)tanβtanαh = \dfrac{{\tan \alpha \tan \beta (a - b)}}{{\tan \beta - \tan \alpha }}
Now, in ΔABE\Delta ABE
tanθ=ABBE\tan \theta = \dfrac{{AB}}{{BE}}
tanθ=hc\tan \theta = \dfrac{h}{c} …..(iv)
Now, we will substitute ion value of hh and cc in equation (iv) , we have
tanθ=(ab)tanαtanβ)tanβtanαatanαbtanβtanβtanα\tan \theta = \dfrac{{\dfrac{{(a - b)\tan \alpha \tan \beta )}}{{\tan \beta - \tan \alpha }}}}{{\dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}}}
tanθ=(ab)tanαtanβtanβtanα×tanβtanαatanαbtanβ\tan \theta = \dfrac{{(a - b)\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }} \times \dfrac{{tan\beta - \tan \alpha }}{{a\tan \alpha - b\tan \beta }}
tanθ=(ab)tanαtanβ(atanαbtainβ)\tan \theta = \dfrac{{(a - b)\tan \alpha \tan \beta }}{{(a\tan \alpha - btain\beta )}}
tanθ=(ba)tanαtanβ(btanβatanα)\tan \theta = \dfrac{{ - (b - a)\tan \alpha \tan \beta }}{{ - (b\tan \beta - a\tan \alpha )}}
tanθ=(ba)tanαtanβbtanβatanα\tan \theta = \dfrac{{(b - a)\tan \alpha \tan \beta }}{{b\tan \beta - a\tan \alpha }}
Now, as we know that tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }}
tanθ=(ba)1cotα×1cotβ(bcotβacotα)\tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }}}}{{\left( {\dfrac{b}{{\cot \beta }} - \dfrac{a}{{\cot \alpha }}} \right)}}
tanθ=(ba)1cotα×1cotβ(bcotαacotβcotβ×cotα)\Rightarrow \tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }}}}{{\left( {\dfrac{{b\cot \alpha - a\cot \beta }}{{\cot \beta \times \cot \alpha }}} \right)}}
tanθ=(ba)1cotα×1cotβ×cotβ×cotαbcotαacotβ)\Rightarrow \tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }} \times \cot \beta \times \cot \alpha }}{{b\cot \alpha - a\cot \beta )}}
tanθ=(ba)bcotαacotβ\Rightarrow \tan \theta = \dfrac{{(b - a)}}{{b\cot \alpha - a\cot \beta }}
θ=tan1(ba)bcotαacotβ\Rightarrow \theta = {\tan ^{ - 1}}\dfrac{{(b - a)}}{{b\cot \alpha - a\cot \beta }}
So, the correct answer is “Option B”.

Note : Students remember that when you make an angle of elevation then follow this instruction it will help you. When you see an object above you, there is an angle of elevation between the horizontal and your line of sight to the object.