Solveeit Logo

Question

Question: A point P(x, y) moves in xy plane in such a way that \(\sqrt { 2 }\) ≤ \|x + y\| + \|x + y\| ≤ 2 \(\...

A point P(x, y) moves in xy plane in such a way that 2\sqrt { 2 } ≤ |x + y| + |x + y| ≤ 2 2\sqrt { 2 } . Area of the region representing all possible positions of the point 'P', is equal to

A

2 sq. units

B

4 sq. units

C

6 sq. units

D

8 sq. union

Answer

6 sq. units

Explanation

Solution

For y – x ≤ 0, x + y ≥ 0.

We get, 2\sqrt { 2 } ≤ x + y + x – y ≤ 222 \sqrt { 2 }

12x2\frac { 1 } { \sqrt { 2 } } \leq x \leq \sqrt { 2 }

for y − x ≥ 0, x + y ≥ 0 We get, 12y2\frac { 1 } { \sqrt { 2 } } \leq y \leq \sqrt { 2 }

For x + y ≤ 0, y - x ≥ 0 We get, 2x12- \sqrt { 2 } \leq x \leq - \frac { 1 } { \sqrt { 2 } }

For x + y ≤ 0, y - x ≤ 0 We get, 2y12- \sqrt { 2 } \leq y \leq - \frac { 1 } { \sqrt { 2 } }

Shaded region represents all positions of point P. it's area is equal to ∆ABCD − ∆A1B1C1D1

i.e. (22)2(2)2( 2 \sqrt { 2 } ) ^ { 2 } - ( \sqrt { 2 } ) ^ { 2 } i.e. 6 sq. units.