Solveeit Logo

Question

Physics Question on Waves

A point performs simple harmonic oscillation of period T and the equation of motion is given by x=asin(ωt+π/6).x = a \sin(\omega t + \pi/6). After the elapse of what fraction of the time period the velocity of the point will be equal to half of its maximum velocity?

A

T/3

B

T/12

C

T/8

D

T/6

Answer

T/12

Explanation

Solution

x=asin(ωt+π/6)x=a \sin (\omega t+\pi/6)
dxdtaωcos(ωt+π/6)\frac{dx}{dt}a\omega \cos(\omega t+\pi/6)
Max. velocity = aωa \omega
aω2=aωcos(ωt+π/6);\therefore \frac{a\omega}{2}=a\omega \cos(\omega t+\pi/6)\,;
cos(ωt+π/6)=12\therefore\, \, \, \, \cos(\omega t +\pi /6)=\frac{1}{2}
6060^\circ or 2π6\frac{2\pi}{6} radian =2πT.t+π/6=\frac{2\pi}{T}.t+\pi/6
2πT.t=2π62π6=+2π6\frac{2\pi}{T}.t=\frac{2\pi}{6}-\frac{2\pi}{6}=+\frac{2\pi}{6}
t=+π6×T2π=+T12\therefore \, \, \, \, t=+\frac{\pi}{6}\times\frac{T}{2\pi}=\Bigg|+\frac{T}{12}\Bigg|