Solveeit Logo

Question

Question: A point particle of mass 0.1Kg is executing SHM of amplitude 0.1m. when the particle passes through ...

A point particle of mass 0.1Kg is executing SHM of amplitude 0.1m. when the particle passes through the mean position, Its kinetic energy is 8×103J8 \times {10^{ - 3}}J. The equation of motion of this particle phase of oscillation is 45{45^ \circ }is-
A. y=0.1sin(t4+π4)y = 0.1\sin \left( {\dfrac{t}{4} + \dfrac{\pi }{4}} \right)
B. y=0.1sin(t2+π4)y = 0.1\sin \left( {\dfrac{t}{2} + \dfrac{\pi }{4}} \right)
C. y=0.1sin(4tπ4)y = 0.1\sin \left( {4t - \dfrac{\pi }{4}} \right)
D. y=0.1sin(4t+π4)y = 0.1\sin \left( {4t + \dfrac{\pi }{4}} \right)

Explanation

Solution

Hint: Use the equation of the displacement of a wave and calculate the velocity. Then compare the kinetic energy of the wave with given value to calculate the angular speed.

Complete step-by-step answer:
Step1: Use the displace equation of a particle executing SHM-
y=a.sin(ωtϕ)y = a.\sin (\omega t - \phi ) ……..(1)
Where a= amplitude, ϕ\phi = phase difference=45{45^ \circ }
Now differentiate with respect to t to calculate the velocity,
velocity=dydt=ωa.cos(ωtϕ)velocity = \dfrac{{dy}}{{dt}} = \omega a.\cos \left( {\omega t - \phi } \right)
Now the maximum value of velocity is given by-
vmax=ωa{v_{\max }} = \omega a
Step2: Now from the equation of kinetic energy calculate the ω\omega -
12mvmax2=8×103\dfrac{1}{2}mv_{\max }^2 = 8 \times {10^{ - 3}}
Substitute the values of m and v in above equation we get,
12×0.1×ω2a2=8×103 12×0.1×ω2×(0.1)2=8×103 ω2=16 ω=16 ω=4  \dfrac{1}{2} \times 0.1 \times {\omega ^2}{a^2} = 8 \times {10^{ - 3}} \\\ \dfrac{1}{2} \times 0.1 \times {\omega ^2} \times {(0.1)^2} = 8 \times {10^{ - 3}} \\\ {\omega ^2} = 16 \\\ \Rightarrow \omega = \sqrt {16} \\\ \omega = 4 \\\
Step3: Now substitute all the values in equation(1) to calculate the equation of the wave.
Therefore,
y=0.1sin(4t+π4)y = 0.1\sin \left( {4t + \dfrac{\pi }{4}} \right)
Which is the required equation, hence option (D) is the correct option.

Note: Keep in mind that while writing the equation always convert the phase angle in radians not in degrees.