Solveeit Logo

Question

Physics Question on Gravitation

A point particle is held on the axis of a ring of mass mm and radius rat a distance rr from its centre CC. When released, it reaches CC under the gravitational attraction of the ring. Its speed at CC will be

A

2Gmr(21)\sqrt{\frac{2Gm}{r}\left(\sqrt{2}-1\right)}

B

Gmr\sqrt{\frac{Gm}{r}}

C

2Gmr(112)\sqrt{\frac{2Gm}{r}\left(1-\frac{1}{\sqrt{2}}\right)}

D

2Gmr\sqrt{\frac{2Gm}{r}}

Answer

2Gmr(112)\sqrt{\frac{2Gm}{r}\left(1-\frac{1}{\sqrt{2}}\right)}

Explanation

Solution

Let 'M be the mass of the particle Now Einitial=EfinalE_{initial} = E_{final} i.e.GMm2r+0=GMmr+12MV2i.e. \frac{GMm}{\sqrt{2}r}+0=\frac{GMm}{r} + \frac{1}{2}MV^{2} or, 12MV2=GMmr[112]\frac{1}{2}MV^{2} = \frac{GMm}{r}\left[1-\frac{1}{\sqrt{2}}\right] 12V2=Gmr[112]\Rightarrow \frac{1}{2}V^{2} = \frac{Gm}{r}\left[1-\frac{1}{\sqrt{2}}\right] or, V=2Gmr(112)V = \sqrt{\frac{2Gm}{r}\left(1-\frac{1}{\sqrt{2}}\right)}