Solveeit Logo

Question

Mathematics Question on Ellipse

A point P moves so that the sum of its distances from (ae,0)(-ae,\,0) and (ae,0)(ae,\,0) is 2a2a . Then the locus of P is

A

x2a2x2a2(1e2)=1\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{x}^{2}}}{{{a}^{2}}(1-{{e}^{2}})}=1

B

x2a2+y2a2(1e2)=1\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{a}^{2}}(1-{{e}^{2}})}=1

C

x2a2+y2a2(1+e2)=1\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{a}^{2}}(1+{{e}^{2}})}=1

D

x2a2y2a2(1+e2)=1\frac{{{x}^{2}}}{{{a}^{2}}}-\frac{{{y}^{2}}}{{{a}^{2}}(1+{{e}^{2}})}=1

Answer

x2a2+y2a2(1e2)=1\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{a}^{2}}(1-{{e}^{2}})}=1

Explanation

Solution

By using the properties, the sum of focal distance of any points on the ellipse is equal to the major axis. \therefore Required equation is x2a2+y2a2(1e2)=1\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{a}^{2}}(1-{{e}^{2}})}=1