Solveeit Logo

Question

Question: A point P is given on the circumference of a circle of radius r. The chord QR is parallel to the tan...

A point P is given on the circumference of a circle of radius r. The chord QR is parallel to the tangent line at P. The maximum area of the triangle PQR is –

A

324\frac { 3 \sqrt { } 2 } { 4 }r2

B

334\frac { 3 \sqrt { } 3 } { 4 }r2

C

38\frac { 3 } { 8 } r

D

) None of these

Answer

334\frac { 3 \sqrt { } 3 } { 4 }r2

Explanation

Solution

A = 12\frac { 1 } { 2 } . QR . PN

= 12\frac { 1 } { 2 } 2r sin q . (r + r cos q)

A = r2 (sinθ+12sin2θ)\left( \sin \theta + \frac { 1 } { 2 } \sin 2 \theta \right) and it will be maximum

When cos q + cos 2q = 0

or cos 2q = – cos q = cos (p – q) or when

q = p/3. In this case the triangle will be equilateral and its area will be

r2 (sinπ3+12sin2π3)\left( \sin \frac { \pi } { 3 } + \frac { 1 } { 2 } \sin \frac { 2 \pi } { 3 } \right) = 334\frac { 3 \sqrt { } 3 } { 4 }r2