Solveeit Logo

Question

Question: A point P divides the line segment joining the points A (3,-5) and B (-4,8) such that \(\dfrac{AP}{P...

A point P divides the line segment joining the points A (3,-5) and B (-4,8) such that APPB=k1\dfrac{AP}{PB}=\dfrac{k}{1} . If P lies on the line x+y=0x+y=0 , then find the value of k.

Explanation

Solution

We will use the section formula, (a,b)=(m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right) where a point (a,b)\left( a,b \right) divides a line with end coordinates (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) in the ratio m1:m2{{m}_{1}}:{{m}_{2}}internally, to find the coordinate of point P. The values of point P will contain the variable k. Then we will substitute this value of P in the equation x+y=0x+y=0, to find the value of k.

Complete step by step answer:
Here the ratio is given as APPB=k1\dfrac{AP}{PB}=\dfrac{k}{1} which clearly implies that the point P divides the line segment joining the points A and B internally.

We know if a point (a,b)\left( a,b \right) divides a line with end coordinates (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) in the ratio m1:m2{{m}_{1}}:{{m}_{2}}internally, then the coordinates of point (a,b) is given by
(a,b)=(m1x2+m2x1m1+m2,m1y2+m2y1m1+m2) (i)\left( a,b \right)=\left( \dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}},\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}} \right)\text{ }\ldots \left( i \right)

If a point P (a,b) divides the line segment with coordinates A (3,-5) and B (-4,8) in the ratio k:1, then substituting these values in equation (i), we get
(a,b)=(k(4)+13k+1,k8+1(5)k+1) (a,b)=(4k+3k+1,8k5k+1)\begin{aligned} & \left( a,b \right)=\left( \dfrac{k(-4)+1\cdot 3}{k+1},\dfrac{k\cdot 8+1(-5)}{k+1} \right) \\\ & \left( a,b \right)=\left( \dfrac{-4k+3}{k+1},\dfrac{8k-5}{k+1} \right) \end{aligned}

It is given that the point P lies on the line x+y=0x+y=0
This means that the coordinates of point P satisfy the equation x+y=0x+y=0

Substituting the value of (a,b) in this equation, we get
 4k+3k+1+8k5k+1=0 4k+3+8k5k+1=0 4k2=0 4k=2 k=12 \begin{aligned} & \text{ }\dfrac{-4k+3}{k+1}+\dfrac{8k-5}{k+1}=0 \\\ & \Rightarrow \dfrac{-4k+3+8k-5}{k+1}=0 \\\ & \Rightarrow 4k-2=0 \\\ & \Rightarrow 4k=2 \\\ & \Rightarrow k=\dfrac{1}{2} \\\ \end{aligned}

So, the value of k is 12\dfrac{1}{2}.

Note: We should keep a cool mind while doing calculations to make it error free. We can use the formula (a,b)=(x1+kx2k+1,y1+ky2k+1)\left( a,b \right)=\left( \dfrac{{{x}_{1}}+k{{x}_{2}}}{k+1},\dfrac{{{y}_{1}}+k{{y}_{2}}}{k+1} \right) directly when (a,b) divides a line with end coordinates (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) in the ratio k:1.