Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.
Show that the minimum length of the hypotenuse is (a23+b23)32(a^{\frac{2}{3}}+b^{\frac{2}{3}})^{\frac{3}{2}}

Answer

The correct answer is =(a23+b23)32=(a^\frac{2}{3}+b^\frac{2}{3})^\frac{3}{2}
Let ABC∆ABC be right-angled at BB.Let AB=xAB=x and BC=yBC=y.
Let PP be a point on the hypotenuse of the triangle such that PP is at a distance of aa and bb from the sides ABAB and BCBC respectively.
Let C=θ∴C=θ.
Triangle
We have,AC=x2+y2AC=\sqrt{x^2+y^2}
Now,
PC=bcosecθPC=b\,cosecθ
And,AP=asecθAP=a\,secθ
AC=AP+PC∴AC=AP+PC
AC=bcosecθ+asecθ(1)∴ AC=b\,cosecθ+a\,secθ … (1)
d(AC)dθ=bcosecθcotθ+asecθtanθ∴\frac{d(AC)}{dθ}=-b\,cosecθ\,cotθ+a\,secθ\,tanθ
d(AC)dθ=0∴\frac{d(AC)}{dθ}=0
asecθtanθ=bcosecθcotθ⇒a\,secθ\,tanθ=b\,cosecθ\,cotθ
acosθ.sinθcosθ=bsinθcosθsinθ⇒\frac{a}{cosθ}.\frac{sinθ}{cosθ}=\frac{b}{sinθ}\frac{cosθ}{sinθ}
asin3θ=bcos3θ⇒a\,sin^3θ=b\,cos^3θ
(a)13sinθ=(b)13cosθ⇒(a)^{\frac{1}{3}}sinθ=(b)^\frac{1}{3}cosθ
tanθ=(ba)13⇒tanθ=(\frac{b}{a})^\frac{1}{3}
sinθ=(b)13a23+d23andcosθ=(a)13a23+d23.....(2)∴sinθ=\frac{(b)^\frac{1}{3}}{\sqrt{a^\frac{2}{3}+d^\frac{2}{3}}} \,and\, cosθ=\frac{(a)^\frac{1}{3}}{\sqrt{a^\frac{2}{3}+d^\frac{2}{3}}} .....(2)
It can be clearly shown that d2(AC)dθ<0\frac{d^2(AC)}{dθ}<0 when tanθ=(ba)13tanθ=(\frac{b}{a})^\frac{1}{3}.
Now when tanθ=(ba)13tanθ=(\frac{b}{a})^\frac{1}{3},we have
AC=ba23+b23b13+aa23+b23a13AC=\frac{b\sqrt{a^\frac{2}{3}+b^\frac{2}{3}}}{b^\frac{1}{3}}+\frac{a\sqrt{a^\frac{2}{3}+b^\frac{2}{3}}}{a^\frac{1}{3}} [Using(1) and(2)]
=a23+b23(b23+a23)=\sqrt{a^\frac{2}{3}+b^\frac{2}{3}}(b^\frac{2}{3}+a^\frac{2}{3})
=(a23+b23)32=(a^\frac{2}{3}+b^\frac{2}{3})^\frac{3}{2}
Hence, the maximum length of the hypotenuses is =(a23+b23)32=(a^\frac{2}{3}+b^\frac{2}{3})^\frac{3}{2}