Solveeit Logo

Question

Question: A point on the ellipse \(\frac{x^{2}}{16}\) – \(\frac{y^{2}}{9}\) = 1 at a distance equal to the mea...

A point on the ellipse x216\frac{x^{2}}{16}y29\frac{y^{2}}{9} = 1 at a distance equal to the mean of the lengths of the semi-major axis and semi-minor axis from the centre is-

A

(±2917,±310514)\left( \pm \frac{2\sqrt{91}}{7}, \pm \frac{3\sqrt{105}}{14} \right)

B

(±2917,±31057)\left( \pm \frac{2\sqrt{91}}{7}, \pm \frac{3\sqrt{105}}{7} \right)

C

(±21057,±39114)\left( \pm \frac{2\sqrt{105}}{7}, \pm \frac{3\sqrt{91}}{14} \right)

D

(±210514,±39114)\left( \pm \frac{2\sqrt{105}}{14}, \pm \frac{3\sqrt{91}}{14} \right)

Answer

(±2917,±310514)\left( \pm \frac{2\sqrt{91}}{7}, \pm \frac{3\sqrt{105}}{14} \right)

Explanation

Solution

Lengths of semi-major axis and semi-minor axis of the ellipse x216\frac{x^{2}}{16}y29\frac{y^{2}}{9}= 1 are 4 and 3 respectively. So that the mean of these length is 72\frac{7}{2}. Let the co-ordinates of any point on the ellipse be P (4 cos q, 3 sin q). If the distance of P from the centre O(0, 0) of the ellipse is 72\frac{7}{2}, then 16 cos2 q + 9 sin2 q = 494\frac{49}{4}.

Ž 28 cos2 q = 13 Ž cos q = ± 1328\sqrt{\frac{13}{28}} = ± 9114\frac{\sqrt{91}}{14} and

sin q = ±10514\frac{\sqrt{105}}{14}.

So, the co-ordinates of the required point are

(±49114,±310514)\left( \pm \frac{4\sqrt{91}}{14}, \pm \frac{3\sqrt{105}}{14} \right) i.e. (±2917,±310514)\left( \pm \frac{2\sqrt{91}}{7}, \pm \frac{3\sqrt{105}}{14} \right)