Solveeit Logo

Question

Question: A point on the ellipse \(\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1\) at a distance equal to the mean of...

A point on the ellipse x216+y29=1\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1 at a distance equal to the mean of the lengths of the semi-major axis and semi-minor axis from the centre is

A

(2917,310514)\left( \frac{2\sqrt{91}}{7},\frac{3\sqrt{105}}{14} \right)

B

(2917,310514)\left( \frac{2\sqrt{91}}{7},\frac{- 3\sqrt{105}}{14} \right)

C

(21057,39114)\left( - \frac{2\sqrt{105}}{7},\frac{- 3\sqrt{91}}{14} \right)

D

(21057,39114)\left( - \frac{2\sqrt{105}}{7},\frac{3\sqrt{91}}{14} \right)

Answer

(2917,310514)\left( \frac{2\sqrt{91}}{7},\frac{3\sqrt{105}}{14} \right)

Explanation

Solution

Given ellipse is x216+y29=1\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1 i.e. x242+y232=1\frac{x^{2}}{4^{2}} + \frac{y^{2}}{3^{2}} = 1.

∴ Lengths of semi-major and semi-minor axes are 4 and 3 respectively. So, the mean of these lengths is 7/2.

Let P (4cos θ, 3 sinθ) be a point on the ellipse at a distance 7/2 from the centre (0, 0).

∴ 16cos2θ + 9sin2θ = 494\frac{49}{4}

⇒ 16cos2θ+ 9 (1 - cos2θ) = 494\frac{49}{4} ⇒ 28cos2θ = 13

⇒ cosθ = ± 1328=±9114\sqrt{\frac{13}{28}} = \pm \sqrt{\frac{91}{14}} and sinθ = ±10514\sqrt{\frac{105}{14}}.

So, the coordinates of the required point are

(±49114,310514)i.e.(±2917,310514)\left( \pm \frac{4\sqrt{91}}{14},\frac{3\sqrt{105}}{14} \right)i.e.\left( \pm \frac{2\sqrt{91}}{7},\frac{3\sqrt{105}}{14} \right).