Solveeit Logo

Question

Mathematics Question on Statistics

A point on the curve 2y3+x2=12y2y^3 + x^2 = 12y at which the tangent to the curve is vertical is

A

(2,1284)\left(\sqrt{2}, \sqrt[4]{128}\right)

B

(1284,2)\left( \sqrt[4]{128}, \sqrt{2}\right)

C

(2,1284)\left( {2}, \sqrt[4]{128}\right)

D

(1284,2)\left(\sqrt[4]{128} , 2\right)

Answer

(1284,2)\left( \sqrt[4]{128}, \sqrt{2}\right)

Explanation

Solution

The given curve is 2y3+x2=12y2y^3 + x^2 = 12y
dxdx=x3(2y2)\Rightarrow \, \, \, \frac{dx}{dx} = \frac{x}{3(2-y^2)}
For vertical tangents, we have dydx=102y2=0\frac{dy}{dx} =\frac{1}{0} \Rightarrow 2-y^{2} =0
y±2\Rightarrow y\pm\sqrt{2}
For y=2,x2=12y2y3=82y=\sqrt{2} ,x^{2} =12y -2y^{3} =8\sqrt{2}
x=(82)22.12=(64×2)14=(128)14\, \, \, \, \, x=\left(8\sqrt{2}\right)^{\frac{2}{2}. \frac{1}{2}} =\left(64 \times2\right)^{\frac{1}{4} } =\left(128\right)^{\frac{1}{4}}
For y=2,x2=22(62)=82y=-\sqrt{2} ,x^{2} =-2\sqrt{2}\left(6-2\right) =-8\sqrt{2}
x=(82)12=(128)14x=\left(-8 \sqrt{2}\right)^{\frac{1}{2}} =\left(128\right)^{\frac{1}{4}}
\therefore \, \, \, \, \, Required point ((128)14,2)\left(_{\left(128\right)} \frac{1}{4}, _{\sqrt{2}}\right)