Solveeit Logo

Question

Question: A point moves with uniform acceleration and \(v_{1},v_{2}\) and \(v_{3}\) denote the average velocit...

A point moves with uniform acceleration and v1,v2v_{1},v_{2} and v3v_{3} denote the average velocities in the three successive intervals of time t1,t2t_{1},t_{2} and t3t_{3}. Which of the following relations is correct

A

(v1v2):(v2v3)=(t1t2):(t2+t3)(v_{1} - v_{2}):(v_{2} - v_{3}) = (t_{1} - t_{2}):(t_{2} + t_{3})

B

(v1v2):(v2v3)=(t1+t2):(t2+t3)(v_{1} - v_{2}):(v_{2} - v_{3}) = (t_{1} + t_{2}):(t_{2} + t_{3})

C

(v1v2):(v2v3)=(t1t2):(t1t3)(v_{1} - v_{2}):(v_{2} - v_{3}) = (t_{1} - t_{2}):(t_{1} - t_{3})

D

(v1v2):(v2v3)=(t1t2):(t2t3)(v_{1} - v_{2}):(v_{2} - v_{3}) = (t_{1} - t_{2}):(t_{2} - t_{3})

Answer

(v1v2):(v2v3)=(t1+t2):(t2+t3)(v_{1} - v_{2}):(v_{2} - v_{3}) = (t_{1} + t_{2}):(t_{2} + t_{3})

Explanation

Solution

Let u1,u2,u3u_{1},u_{2},u_{3} and u4u_{4} be velocities at time

t=0,6mut1,6mu(t1+t2)t = 0,\mspace{6mu} t_{1},\mspace{6mu}(t_{1} + t_{2}) and (t1+t2+t3)(t_{1} + t_{2} + t_{3}) respectively and

acceleration is a then

v1=u1+u22,6muv2=u2+u32and6muv3=u3+u42v_{1} = \frac{u_{1} + u_{2}}{2},\mspace{6mu} v_{2} = \frac{u_{2} + u_{3}}{2}\text{and}\mspace{6mu} v_{3} = \frac{u_{3} + u_{4}}{2}

Also u2=u1+at16mu,6muu3=u1+a(t1+t2)u_{2} = u_{1} + at_{1}\mspace{6mu},\mspace{6mu} u_{3} = u_{1} + a(t_{1} + t_{2})

and u4=u1+a(t1+t2+t3)u_{4} = u_{1} + a(t_{1} + t_{2} + t_{3})

By solving, we get v1v2v2v3=(t1+t2)(t2+t3)\frac{v_{1} - v_{2}}{v_{2} - v_{3}} = \frac{(t_{1} + t_{2})}{(t_{2} + t_{3})}