Solveeit Logo

Question

Mathematics Question on Straight lines

A point moves so that the sum of squares of its distances from the points (1,2) and (-2,1) is always 6. Then its locus is

A

the straight line y32=3(x+12)y - \frac{3}{2} = -3\left(x+\frac{1}{2}\right)

B

a circle with centre (12,32)\left(-\frac{1}{2}, \frac{3}{2}\right) and radius 12\frac{1}{\sqrt{2}}

C

a parabola with focus (1,2) and directix pssing through (-2,1)

D

an ellipse with foci (1,2) and (-2,1)

Answer

a circle with centre (12,32)\left(-\frac{1}{2}, \frac{3}{2}\right) and radius 12\frac{1}{\sqrt{2}}

Explanation

Solution

Let PP be any point, whose coordinate is (h,k)(h, k). Given, PP moves, so that the sum of squares of its distances from the points A(1,2)A(1,2) and B(2,1)B(-2,1) is 6 . i.e., (PA)2+(PB)2=6(P A)^{2}+(P B)^{2}=6 (h1)2+(k2)2+(h+2)2+(k1)2=6\Rightarrow (h-1)^{2}+(k-2)^{2}+(h+2)^{2}+(k-1)^{2}=6 h2+12h+k2+44k+h2+4+4h\Rightarrow h^{2}+1-2\, h+k^{2}+4-4 \,k+h^{2}+4+4 \,h +k2+12k=6+k^{2}+1-2\, k=6 2h2+2k2+2h6k+4=0\Rightarrow 2 \,h^{2}+2\, k^{2}+2 \,h-6 \,k+4=0 h2+k2+h3k+2=0\Rightarrow h^{2}+k^{2}+h-3\, k+2=0 \therefore Required locus is x2+y2+x3y+2=0x^{2}+y^{2}+x-3\, y+2=0 Which represent a circle. Whose centre is (12,32)\left(\frac{-1}{2}, \frac{3}{2}\right) and radius =14+942=522=12=\sqrt{\frac{1}{4}+\frac{9}{4}-2}=\sqrt{\frac{5}{2}-2}=\frac{1}{\sqrt{2}}