Solveeit Logo

Question

Question: A point moves according to the law x = at, y = at(1 - αt) where a and α are positive constants and t...

A point moves according to the law x = at, y = at(1 - αt) where a and α are positive constants and t is time. Find the moment at which angle between velocity vector and acceleration vector is π/4.

A

1/α

B

α

C

1/α2

D

None of these

Answer

1/α

Explanation

Solution

v=dxdti^+dydtj^=ai^+(a2aαt)j^\overrightarrow{v} = \frac{dx}{dt}\widehat{i} + \frac{dy}{dt}\widehat{j} = a\widehat{i} + (a - 2a\alpha t)\widehat{j}

f = dvdt=2aαj^\frac{dv}{dt} = - 2a\alpha\widehat{j}

cos π4=2aαj^.[ai^+(a2aαt)j^]2aαa2+(a2aαt)2\frac{\pi}{4} = \frac{- 2a\alpha\widehat{j}.\left\lbrack a\widehat{i} + (a - 2a\alpha t)\widehat{j} \right\rbrack}{2a\alpha\sqrt{a^{2} + (a - 2a\alpha t)^{2}}}

12=[a2aαt]a2+(a2aαt)2\frac{1}{\sqrt{2}} = \frac{- \lbrack a - 2a\alpha t\rbrack}{\sqrt{a^{2} + (a - 2a\alpha t)^{2}}} or

2(1 - 2αt)2 = 1 + (1 - 2αt)2

or (1 - 2αt)2 = 1 or t = 1/α