Solveeit Logo

Question

Physics Question on Oscillations

A point mass is subjected to two simultaneous sinusoidal displacements in x-direction, x1(t)=Asinωtx_1 (t) = A sin \omega t and x2(t)=Asin(ωt+2π3)x_2(t) = Asin\bigg( \omega t + \frac{ 2 \pi }{ 3} \bigg) Adding a third sinusoidal displacement x3(t)=Bsin(ωl+Φ)x_3(t)=B sin(\omega l + \Phi) brings the mass to a complete rest. The values of B and Φ\Phi are

A

2A,3π4\sqrt 2 A , \frac{ 3 \pi }{4}

B

A,4π3 A , \frac{ 4 \pi }{3}

C

3A,5π6\sqrt 3 A , \frac{ 5 \pi }{6}

D

A,π3 A , \frac{ \pi }{3}

Answer

A,4π3 A , \frac{ 4 \pi }{3}

Explanation

Solution

Resultant amplitude of x1andx2x_1 \, \, and \, \, x_ 2 is A at angle (π3)fromA1 \bigg(\frac{\pi}{3}\bigg) \, \, from \, \, A_1.
To make resultant of x1,x2andx3x_1 ,x_2 \, \, and \, \, x_3 to be zero.A3A_3 should be
equal to A at angle Φ=4π3\Phi =\frac{4 \pi }{3} as shown in figure.
\therefore Correct answer is (b).
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,
Alternate Solution
It we substitute, x1+x2+x3=0x_1 +x_2 + x_3 =0
or Asinωt+Asin(ωt+2π3)+Bsin(ωt+Φ)=0Asin \omega t + A sin \bigg( \omega t + \frac{ 2 \pi}{3} \bigg) + B sin (\omega t + \Phi ) =0
Then by applying simple mathematics we can prove that
B=AandΦ=4π3B= A \, \, and \, \, \Phi = \frac{ 4 \pi}{3}