Solveeit Logo

Question

Physics Question on Motion in a straight line

A point initially at rest moves along xx-axis. Its acceleration varies with time as a=(6t+5)m/s2 a=(6t+5)\,m/s^{2} . If it starts from origin, the distance covered in 2s2\, s is

A

20 m

B

18 m

C

16 m

D

25 m

Answer

18 m

Explanation

Solution

Given, a=dvdt=6t+5a=\frac{dv}{dt}=6t+5 or dv=(6t+5)dtdv=(6t+5)dt Integrating, we get 0vdv=01(6t+5)dt\int\limits_{0}^{v}{dv}=\int\limits_{0}^{1}{(6t+5)}dt or v=(6t22+5t)v=\left( \frac{6{{t}^{2}}}{2}+5t \right) Again v=dsdtv=\frac{ds}{dt} \therefore ds=(6t22+5t)dtds=\left( \frac{6{{t}^{2}}}{2}+5t \right)dt Integrating again, we get 0sds=01(6t22+5t)dt\int\limits_{0}^{s}{ds}=\int\limits_{0}^{1}{\left( \frac{6{{t}^{2}}}{2}+5t \right)dt} s=3t33+5t22\therefore s=\frac{3{{t}^{3}}}{3}+\frac{5{{t}^{2}}}{2} When, t=2,s=3×233+5×222t=2,\,\,s=3\times \frac{{{2}^{3}}}{3}+\frac{5\times {{2}^{2}}}{2} =3×83+5×42=3\times \frac{8}{3}+\frac{5\times 4}{2} =8+10=18m=8+10=18\,\,m