Solveeit Logo

Question

Question: A point equidistant from the lines 4x+3y+10 = 0, 5x-12y+26 = 0 and 7x+24y-50 = 0 is [a] (1,-1) [...

A point equidistant from the lines 4x+3y+10 = 0, 5x-12y+26 = 0 and 7x+24y-50 = 0 is
[a] (1,-1)
[b] (1,1)
[c] (0,0)
[d] (0,1)

Explanation

Solution

Hint: Assume that the coordinates of the point be P (x,y). Find the distance of P from 4x+3y+10=0, 5x-12y+26=0 and 7x+24y-50 = 0. Let those distances be d1,d2{{d}_{1}},{{d}_{2}} and d3{{d}_{3}}.
Equate d1{{d}_{1}} and d2{{d}_{2}} and form an equation in x and y.
Again equate d2{{d}_{2}} and d3{{d}_{3}} and form an equation in x and y.
Solve the system of the equations for x and y.
The value of x and y gives the value of the coordinates of point P. Notice that there should exist four such points which are the centres of the three excircles and one incircle of the triangle formed by these lines.

Complete step-by-step answer:
Let the coordinates of the point be P(x,y).
We know that the distance of the point P(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right) from the line Ax+By+C=0Ax+By+C=0 is given by Ax1+By1+CA2+B2\dfrac{\left| A{{x}_{1}}+B{{y}_{1}}+C \right|}{\sqrt{{{A}^{2}}+{{B}^{2}}}}
Hence we have
The distance of P from 4x+3y+10 = 0 is d1=4x+3y+1032+42=4x+3y+105{{d}_{1}}=\dfrac{\left| 4x+3y+10 \right|}{\sqrt{{{3}^{2}}+{{4}^{2}}}}=\dfrac{\left| 4x+3y+10 \right|}{5}
The distance of P from 5x-12y+26 = 0 is d2=5x12y+2652+122=5x12y+2613{{d}_{2}}=\dfrac{\left| 5x-12y+26 \right|}{\sqrt{{{5}^{2}}+{{12}^{2}}}}=\dfrac{\left| 5x-12y+26 \right|}{13}
The distance of P from 7x+24y-50 = 0 is d3=7x+24y5072+242=7x+24y5025{{d}_{3}}=\dfrac{\left| 7x+24y-50 \right|}{\sqrt{{{7}^{2}}+{{24}^{2}}}}=\dfrac{\left| 7x+24y-50 \right|}{25}
Now we have
d1=d2{{d}_{1}}={{d}_{2}}
Hence we get
4x+3y+105=5x12y+2613 134x+3y+10=55x12y+26 (i) \begin{aligned} & \dfrac{\left| 4x+3y+10 \right|}{5}=\dfrac{\left| 5x-12y+26 \right|}{13} \\\ & \Rightarrow 13\left| 4x+3y+10 \right|=5\left| 5x-12y+26 \right|\text{ (i)} \\\ \end{aligned}
Also, d1=d3{{d}_{1}}={{d}_{3}}
Hence we get
4x+3y+105=7x+24y5025 54x+3y+10=7x+24y50 (ii) \begin{aligned} & \dfrac{\left| 4x+3y+10 \right|}{5}=\dfrac{\left| 7x+24y-50 \right|}{25} \\\ & \Rightarrow 5\left| 4x+3y+10 \right|=\left| 7x+24y-50 \right|\text{ (ii)} \\\ \end{aligned}
Now we know that if ax=by,a,b>0a\left| x \right|=b\left| y \right|,a,b>0 then ax=±byax=\pm by
Hence equation (i) becomes 13(4x+3y+10)=±5(5x12y+26) 13\left( 4x+3y+10 \right)=\pm 5\left( 5x-12y+26 \right)\text{ }
Taking with + sign, we get
52x+39y+130=25x60y+130 27x+99y=0 (A) \begin{aligned} & 52x+39y+130=25x-60y+130 \\\ & \Rightarrow 27x+99y=0\text{ (A)} \\\ \end{aligned}
Taking with the – sign, we get

& 52x+39y+130=-25x+60y-130 \\\ & \Rightarrow 77x-21y+260=0\text{ (B)} \\\ \end{aligned}$$ Also from equation (ii), we have $$5\left( 4x+3y+10 \right)=\pm \left( 7x+24y-50 \right)$$ Taking with + sign, we get $\begin{aligned} & 20x+15y+50=7x+24y-50 \\\ & \Rightarrow 13x-9y+100=0\text{ (C)} \\\ \end{aligned}$ Taking with the – sign, we get $\begin{aligned} & 20x+15y+50=-7x-24y+50 \\\ & \Rightarrow 27x+39y=0\text{ (D)} \\\ \end{aligned}$ ![](https://www.vedantu.com/question-sets/d99397bb-11bb-4e6f-9ac7-8d96c9480b925718501731465404048.png) Solving system A and C $\begin{aligned} & 27x+99y=0\text{ } \\\ & 13x-9y+100=0\text{ } \\\ \end{aligned}$ Multiply equation B by 11 and adding to equation B, we get $\begin{aligned} & 27x+143x+99y-99y+1100=0 \\\ & 170x+1100=0 \\\ & \Rightarrow x=\dfrac{-110}{17} \\\ \end{aligned}$ Substituting the value of x in equation A, we get $\begin{aligned} & 27\left( \dfrac{-110}{17} \right)+99y=0 \\\ & \Rightarrow y=\dfrac{30}{17} \\\ \end{aligned}$ Hence one point is $\left( \dfrac{-110}{17},\dfrac{30}{17} \right)$. Similarly solving system A and D, we get $\begin{aligned} & 27x+99y=0 \\\ & 27x+39y=0 \\\ \end{aligned}$ Subtracting equation D from equation A, we get $\begin{aligned} & 27x-27x+99y-39y=0 \\\ & \Rightarrow 60y=0 \\\ & \Rightarrow y=0 \\\ \end{aligned}$ Substituting the value of y in equation A, we get $\begin{aligned} & 27x+0=0 \\\ & \Rightarrow x=0 \\\ \end{aligned}$ Hence another point is (0,0) Solving the system B and C, we get $\begin{aligned} & 77x-21y+260=0\text{ } \\\ & 13x-9y+100=0\text{ } \\\ \end{aligned}$ Multiplying equation B by 3 and equation C by 7 and adding the two equations, we get $\begin{aligned} & 231x-91x-63x+63x+780-700=0 \\\ & \Rightarrow 140x+80=0 \\\ & \Rightarrow x=\dfrac{-80}{140}=\dfrac{-4}{7} \\\ \end{aligned}$ Substituting the value of x in equation B, we get $\begin{aligned} & 77\left( \dfrac{-4}{7} \right)-21y+260=0 \\\ & \Rightarrow y=\dfrac{72}{7} \\\ \end{aligned}$ Hence another point is $\left( \dfrac{-4}{7},\dfrac{72}{7} \right)$ Solving system B and D, we get $$\begin{aligned} & 77x-21y+260=0\text{ } \\\ & 27x+39y=0 \\\ \end{aligned}$$ Multiplying equation B by 13 and equation D by 7 and adding the two equations, we get $\begin{aligned} & 1001x+189x-273y+273y+3380=0 \\\ & \Rightarrow 1190x+3380=0 \\\ & \Rightarrow x=\dfrac{-3380}{1190}=-\dfrac{338}{119} \\\ \end{aligned}$ Substituting the value of x in equation D, we get $\begin{aligned} & 27\left( \dfrac{-338}{119} \right)+39y=0 \\\ & \Rightarrow y=\dfrac{234}{119} \\\ \end{aligned}$ Hence another point is $\left( \dfrac{-338}{119},\dfrac{234}{119} \right)$ Hence the points equidistant from the given lines are $\left( \dfrac{-110}{17},\dfrac{30}{17} \right),\left( 0,0 \right),\left( \dfrac{-4}{7},\dfrac{72}{7} \right)$ and $\left( \dfrac{-338}{119},\dfrac{234}{119} \right)$ Hence option [c] is correct. Note: Alternative Solution Find the coordinates of points of intersection of the lines. Hence find the lengths of the sides of the triangle formed by these lines. Find the coordinates of incentre by using the formula $$\left( \dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c},\dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)$$ and find the coordinates of excentres using the formula ${{I}_{1}}\equiv \left( \dfrac{-a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{-a+b+c},\dfrac{-a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{-a+b+c} \right),{{I}_{2}}\equiv \left( \dfrac{a{{x}_{1}}-b{{x}_{2}}+c{{x}_{3}}}{a-b+c},\dfrac{a{{y}_{1}}-b{{y}_{2}}+c{{y}_{3}}}{a-b+c} \right)$ and ${{I}_{3}}\equiv \left( \dfrac{a{{x}_{1}}+b{{x}_{2}}-c{{x}_{3}}}{a+b-c},\dfrac{a{{y}_{1}}+b{{y}_{2}}-c{{y}_{3}}}{a+b-c} \right)$, where a is the length of the side opposite to $A\left( {{x}_{1}},{{y}_{1}} \right)$, b is the length of the side opposite to $B\left( {{x}_{2}},{{y}_{2}} \right)$ and c is the length of the side opposite to $C\left( {{x}_{3}},{{y}_{3}} \right)$.