Solveeit Logo

Question

Question: A point charge $q_1 = 9.1\mu C$ is held fixed at origin. A second point charge $q_2 = -0.42\mu C$ an...

A point charge q1=9.1μCq_1 = 9.1\mu C is held fixed at origin. A second point charge q2=0.42μCq_2 = -0.42\mu C and a mass 3.2×1043.2\times10^{-4} kg is placed on the x-axis, 0.96 m from the origin. The second point charge is released at rest. What is its speed when it is 0.24 m from the origin?

Answer

25.92 m/s

Explanation

Solution

The problem involves the motion of a charged particle in an electrostatic field, which is a conservative field. Therefore, the principle of conservation of mechanical energy can be applied. The total mechanical energy (kinetic energy + potential energy) of the system remains constant.

1. Identify Initial and Final States:

  • Initial State (at ri=0.96r_i = 0.96 m):

    • The second charge is released from rest, so its initial speed vi=0v_i = 0.
    • Initial Kinetic Energy: Ki=12mvi2=0K_i = \frac{1}{2} m v_i^2 = 0
    • Initial Potential Energy: Ui=kq1q2riU_i = \frac{k q_1 q_2}{r_i}
  • Final State (at rf=0.24r_f = 0.24 m):

    • Let the final speed be vfv_f.
    • Final Kinetic Energy: Kf=12mvf2K_f = \frac{1}{2} m v_f^2
    • Final Potential Energy: Uf=kq1q2rfU_f = \frac{k q_1 q_2}{r_f}

2. Apply Conservation of Mechanical Energy:

The principle of conservation of mechanical energy states that Ki+Ui=Kf+UfK_i + U_i = K_f + U_f. Substituting the expressions for kinetic and potential energies: 0+kq1q2ri=12mvf2+kq1q2rf0 + \frac{k q_1 q_2}{r_i} = \frac{1}{2} m v_f^2 + \frac{k q_1 q_2}{r_f}

3. Rearrange and Solve for vfv_f:

12mvf2=kq1q2rikq1q2rf\frac{1}{2} m v_f^2 = \frac{k q_1 q_2}{r_i} - \frac{k q_1 q_2}{r_f} 12mvf2=kq1q2(1ri1rf)\frac{1}{2} m v_f^2 = k q_1 q_2 \left( \frac{1}{r_i} - \frac{1}{r_f} \right) vf2=2kq1q2m(1ri1rf)v_f^2 = \frac{2 k q_1 q_2}{m} \left( \frac{1}{r_i} - \frac{1}{r_f} \right)

4. Substitute Given Values:

  • q1=9.1μC=9.1×106q_1 = 9.1\mu C = 9.1 \times 10^{-6} C
  • q2=0.42μC=0.42×106q_2 = -0.42\mu C = -0.42 \times 10^{-6} C
  • m=3.2×104m = 3.2 \times 10^{-4} kg
  • ri=0.96r_i = 0.96 m
  • rf=0.24r_f = 0.24 m
  • Coulomb's constant k=9×109N m2/C2k = 9 \times 10^9 \, \text{N m}^2/\text{C}^2

First, calculate the term (1ri1rf)\left( \frac{1}{r_i} - \frac{1}{r_f} \right): (10.9610.24)=(10.9640.96)=140.96=30.96\left( \frac{1}{0.96} - \frac{1}{0.24} \right) = \left( \frac{1}{0.96} - \frac{4}{0.96} \right) = \frac{1 - 4}{0.96} = \frac{-3}{0.96} =30096=258= \frac{-300}{96} = -\frac{25}{8}

Now, substitute all values into the equation for vf2v_f^2: vf2=2×(9×109)×(9.1×106)×(0.42×106)3.2×104×(258)v_f^2 = \frac{2 \times (9 \times 10^9) \times (9.1 \times 10^{-6}) \times (-0.42 \times 10^{-6})}{3.2 \times 10^{-4}} \times \left(-\frac{25}{8}\right)

Notice that q1q2q_1 q_2 is negative, and the term (1ri1rf)\left(\frac{1}{r_i} - \frac{1}{r_f}\right) is also negative. The product of two negatives will be positive, as expected for vf2v_f^2.

vf2=2×9×9.1×0.42×109663.2×104×258v_f^2 = \frac{2 \times 9 \times 9.1 \times 0.42 \times 10^{9-6-6}}{3.2 \times 10^{-4}} \times \frac{25}{8} vf2=18×9.1×0.42×1033.2×104×258v_f^2 = \frac{18 \times 9.1 \times 0.42 \times 10^{-3}}{3.2 \times 10^{-4}} \times \frac{25}{8} vf2=68.796×1033.2×104×258v_f^2 = \frac{68.796 \times 10^{-3}}{3.2 \times 10^{-4}} \times \frac{25}{8} vf2=(68.7963.2)×(103104)×(258)v_f^2 = \left( \frac{68.796}{3.2} \right) \times \left( \frac{10^{-3}}{10^{-4}} \right) \times \left( \frac{25}{8} \right) vf2=21.49875×101×3.125v_f^2 = 21.49875 \times 10^1 \times 3.125 vf2=214.9875×3.125v_f^2 = 214.9875 \times 3.125 vf2=671.8359375v_f^2 = 671.8359375

Finally, calculate vfv_f: vf=671.8359375v_f = \sqrt{671.8359375} vf25.920v_f \approx 25.920 m/s

Rounding to two significant figures (based on the input values), the speed is approximately 26 m/s.