Solveeit Logo

Question

Physics Question on Electric charges and fields

A point charge qq is placed at origin. Let EAEBE _{A^{\prime}} E _{B} and ECE _{C} be the electric fields at three points AA (1,2,3),B(1,1,1)(1,2,3), B(1,1,-1) and C(2,2,2)C(2,2,2) respectively due to the charge qq. Then, the relation between them is 1. EAEBE _{A} \perp E _{B} 2. EAECE _{A} \| E _{C} 3. EB=4Ec\left| E _{B}\right|=4\left| E _{c}\right| 4. EB=8Ec\left| E _{B}\right|=8\left| E _{c}\right|

A

1, 4 are correct

B

2, 4 are correct

C

1, 3 are correct

D

2, 3 are correct

Answer

1, 3 are correct

Explanation

Solution

In vector form, we write expressions of field at A,BA, B and CC E _{A} =\left\\{\frac{k q}{\left(1^{2}+2^{2}+3^{2}\right)^{3 / 2}}\right\\}(\hat{ i }+2 \hat{ j }+3 \hat{ k }) EB=kq(12+12+(1)2)3/2(i^+j^k^)E _{B} =\frac{k q}{\left(1^{2}+1^{2}+(-1)^{2}\right)^{3 / 2}} \cdot(\hat{ i }+\hat{ j }-\hat{ k }) EC=kq(22+22+22)3/2(2i^+2j^+2k^)E _{C} =\frac{k q}{\left(2^{2}+2^{2}+2^{2}\right)^{3 / 2}} \cdot(2 \hat{ i }+2 \hat{ j }+2 \hat{ k }) So, EA=kq143/2(i^+2j^+3k^)E _{A} =\frac{k q}{14^{3 / 2}}(\hat{ i }+2 \hat{ j }+3 \hat{ k }) EB=kq33/2(i^+j^k^)E _{B} =\frac{k q}{3^{3 / 2}}(\hat{ i }+\hat{ j }-\hat{ k }) EC=kq123/2(2i^+2j^+2k^)E _{C} =\frac{k q}{12^{3 / 2}}(2 \hat{ i }+2 \hat{ j }+2 \hat{ k }) As, EAEB=0E _{A} \perp E _{B}=0 and EB=4ECE _{B}=4\left| E _{C}\right|