Solveeit Logo

Question

Question: A point charge \(\left( q \right)\) is placed at the origin. Let \({\vec E_A}\),\({\vec E_B}\) \({\v...

A point charge (q)\left( q \right) is placed at the origin. Let EA{\vec E_A},EB{\vec E_B} EC{\vec E_C} be the electric fields at three points A(1,2,3),B(1,1,1),C(2,2,2)A\left( {1,2,3} \right), B\left( {1,1, - 1} \right),C\left( {2,2,2} \right)respectively due to the charge (q)\left( q \right). Then ,
(1)EAEB (2)Eb=4Ec  \left( 1 \right){{\vec E}_A} \bot {{\vec E}_B} \\\ \left( 2 \right)\left| {{{\vec E}_b}} \right| = 4\left| {{{\vec E}_c}} \right| \\\
Select the correct alternative
a) Only (1)\left( 1 \right) is correct
b) Only(2)\left( 2 \right) is correct
c) Both (1)\left( 1 \right) and (2)\left( 2 \right) are correct
d) Both (1)\left( 1 \right) and (2)\left( 2 \right) are wrong

Explanation

Solution

  1. The vector form coordinates as written as xi^+yj^+zk^x\hat i + y\hat j + z\hat k.
  2. If two vectors are perpendicular, then their dot product is zero.
  3. The magnitude of the vector is calculated as A=x2×y2×z2\left| A \right| = \sqrt {{x^2} \times {y^2} \times {z^2}} .
  4. A unit vector for a given vector in its direction is calculated as A=xi^+yj^+zk^x2+y2+z2\vec A = \dfrac{{x\hat i + y\hat j + z\hat k}}{{\sqrt {{x^2} + {y^2} + {z^2}} }}.

Complete step by step solution:
We know that the electric field vector EA{\vec E_A}can be written as,

EA=kqrOA2×r^OA EA=kq12+22+322×1i^+2j^+3k^12+22+32 EA=kq142×1i^+2j^+3k^14 EA=kq(1i^+2j^+3k^)1414  {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OA}}} \right|}^2}}} \times {{\hat r}_{OA}} \\\ \therefore {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {2^2} + {3^2}} } \right|}^2}}} \times \dfrac{{1\hat i + 2\hat j + 3\hat k}}{{\sqrt {{1^2} + {2^2} + {3^2}} }} \\\ \Rightarrow {{\vec E}_A} = \dfrac{{kq}}{{{{\left| {\sqrt {14} } \right|}^2}}} \times \dfrac{{1\hat i + 2\hat j + 3\hat k}}{{\sqrt {14} }} \\\ \Rightarrow {{\vec E}_A} = \dfrac{{kq\left( {1\hat i + 2\hat j + 3\hat k} \right)}}{{14\sqrt {14} }} \\\

Now similarly we will calculate for vectorEB{\vec E_B}

EB=kqrOB2×r^OB EB=kq12+12+(1)22×1i^+1j^1k^12+12+(1)2 EB=kq32×1i^+1j^1k^3 EB=kq(1i^+2j^+3k^)33  {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OB}}} \right|}^2}}} \times {{\hat r}_{OB}} \\\ \therefore {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} } \right|}^2}}} \times \dfrac{{1\hat i + 1\hat j - 1\hat k}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} \\\ \Rightarrow {{\vec E}_B} = \dfrac{{kq}}{{{{\left| {\sqrt 3 } \right|}^2}}} \times \dfrac{{1\hat i + 1\hat j - 1\hat k}}{{\sqrt 3 }} \\\ \Rightarrow {{\vec E}_B} = \dfrac{{kq\left( {1\hat i + 2\hat j + 3\hat k} \right)}}{{3\sqrt 3 }} \\\

similarly, we will calculate for vector EC{\vec E_C}

EC=kqrOC2×r^OC EC=kq22+22+222×2i^+2j^+2k^22+22+22 EC=kq122×2i^+2j^+2k^12 EC=kq(2i^+2j^+2k^)12×23  {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OC}}} \right|}^2}}} \times {{\hat r}_{OC}} \\\ \therefore {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {\sqrt {{2^2} + {2^2} + {2^2}} } \right|}^2}}} \times \dfrac{{2\hat i + 2\hat j + 2\hat k}}{{\sqrt {{2^2} + {2^2} + {2^2}} }} \\\ \Rightarrow {{\vec E}_C} = \dfrac{{kq}}{{{{\left| {\sqrt {12} } \right|}^2}}} \times \dfrac{{2\hat i + 2\hat j + 2\hat k}}{{\sqrt {12} }} \\\ \Rightarrow {{\vec E}_C} = \dfrac{{kq\left( {2\hat i + 2\hat j + 2\hat k} \right)}}{{12 \times 2\sqrt 3 }} \\\

Taking 2 OUT and canceling it by the 2 in the denominator the above equation can be written as
EC=kq(i^+j^+k^)123\Rightarrow {\vec E_C} = \dfrac{{kq\left( {\hat i + \hat j + \hat k} \right)}}{{12\sqrt 3 }}
Now for the first option (1)\left( 1 \right):
We know that if two vectors are perpendicular to each other their dot product will be zero
If EAEB{\vec E_A} \bot {\vec E_B}
EA.EB=0\therefore {\vec E_A}.{\vec E_B} = 0
Substituting the values of both vectors we get

EA.EB=(kq1414)(1i^+2j^+3k^).(kq33)(1i^+1j^1k^) EA.EB=(kq1414)(kq33)((1i^.1i^)+(2j^.1j^)+(3k^.(1k^))) EA.EB=(kq1414)(kq33)(1+23) EA.EB=0  {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {1\hat i + 2\hat j + 3\hat k} \right).\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {1\hat i + 1\hat j - 1\hat k} \right) \\\ \Rightarrow {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {\left( {1\hat i.1\hat i} \right) + \left( {2\hat j.1\hat j} \right) + \left( {3\hat k.\left( { - 1\hat k} \right)} \right)} \right) \\\ \Rightarrow {{\vec E}_A}.{{\vec E}_B} = \left( {\dfrac{{kq}}{{14\sqrt {14} }}} \right)\left( {\dfrac{{kq}}{{3\sqrt 3 }}} \right)\left( {1 + 2 - 3} \right) \\\ \Rightarrow {{\vec E}_A}.{{\vec E}_B} = 0 \\\

Here we have seen that the dot product of both the vectors is zero hence the required condition is satisfied so we can say that EAEB{\vec E_A} \bot {\vec E_B}.
So, the option (1)\left( 1 \right)is correct.
Now for the first option (2)\left( 2 \right):
We know that
EB=kqrOB2 EB=kq12+12+(1)22  \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OB}}} \right|}^2}}} \\\ \therefore \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{{{{\left| {\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} } \right|}^2}}} \\\
EB=kq3\Rightarrow \left| {{{\vec E}_B}} \right| = \dfrac{{kq}}{3}(a)\left( a \right)
Now similarly,
EC=kqrOC2 EC=kq22+22+222   \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{{{\left| {{{\vec r}_{OC}}} \right|}^2}}} \\\ \therefore \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{{{\left| {\sqrt {{2^2} + {2^2} + {2^2}} } \right|}^2}}} \\\ \\\
EC=kq12\Rightarrow \left| {{{\vec E}_C}} \right| = \dfrac{{kq}}{{12}}
___(b)\left( b \right)
On dividing the equation (a)\left( a \right)by(b)\left( b \right) we get

EBEC=(kq3)(kq12) EBEC=4   \dfrac{{\left| {{{\vec E}_B}} \right|}}{{\left| {{{\vec E}_C}} \right|}} = \dfrac{{\left( {\dfrac{{kq}}{3}} \right)}}{{\left( {\dfrac{{kq}}{{12}}} \right)}} \\\ \Rightarrow \dfrac{{\left| {{{\vec E}_B}} \right|}}{{\left| {{{\vec E}_C}} \right|}} = 4 \\\ \\\

So, we can say that
EB=4EC\left| {{{\vec E}_B}} \right| = 4\left| {{{\vec E}_C}} \right| Hence option (2)\left( 2 \right) is also correct.

Both (1)\left( 1 \right) and (2)\left( 2 \right) are correct

Note: The unit vector in the direction vector is the vector divided by its mod
In the dot multiplication, (i^)\left( {\hat i} \right)is always multiplied with (i^)\left( {\hat i} \right)similarly (j^)\left( {\hat j} \right)is multiplied with (j^)\left( {\hat j} \right)and (k^)\left( {\hat k} \right)is multiplied with (k^)\left( {\hat k} \right), and they all are summed together.
In dot product (i^.i^)=1,(j^.j^=1)\left( {\hat i.\hat i} \right) = 1,\left( {\hat j.\hat j = 1} \right)and (k^.k^)=1\left( {\hat k.\hat k} \right) = 1
In vector calculation direction of the vector is very important and must be taken care of.
If two vectors are perpendicular, their dot product will be zero.