Solveeit Logo

Question

Question: A plot of volume (V) versus temperature (T) for a gas at constant pressure is a straight line passin...

A plot of volume (V) versus temperature (T) for a gas at constant pressure is a straight line passing through the origin. The plots at different values of pressure are shown in figure.

Which of the following order of pressure is correct for this gas?

A

B

P1=P2=P3=P4\mathrm { P } _ { 1 } = \mathrm { P } _ { 2 } = \mathrm { P } _ { 3 } = \mathrm { P } _ { 4 }

C

P1<P2<P3<P4\mathrm { P } _ { 1 } < \mathrm { P } _ { 2 } < \mathrm { P } _ { 3 } < \mathrm { P } _ { 4 }

D

P1<P2=P3<P4\mathrm { P } _ { 1 } < \mathrm { P } _ { 2 } = \mathrm { P } _ { 3 } < \mathrm { P } _ { 4 }

Answer

P1<P2<P3<P4\mathrm { P } _ { 1 } < \mathrm { P } _ { 2 } < \mathrm { P } _ { 3 } < \mathrm { P } _ { 4 }

Explanation

Solution

: PV = constant at given temperature

P1 V1=P2 V2=P3 V3=P4 V4\therefore \mathrm { P } _ { 1 } \mathrm {~V} _ { 1 } = \mathrm { P } _ { 2 } \mathrm {~V} _ { 2 } = \mathrm { P } _ { 3 } \mathrm {~V} _ { 3 } = \mathrm { P } _ { 4 } \mathrm {~V} _ { 4 }

Now, V1>V2>V3>V4V _ { 1 } > V _ { 2 } > V _ { 3 } > V _ { 4 } (From the figures)

Hence, P1<P2<P3<P4\mathrm { P } _ { 1 } < \mathrm { P } _ { 2 } < \mathrm { P } _ { 3 } < \mathrm { P } _ { 4 } (P1 V)\left( \because \mathrm { P } \propto \frac { 1 } { \mathrm {~V} } \right)