Solveeit Logo

Question

Physics Question on Gravitation

A planet of mass mm moves in an elliptical orbit around an unknown star of mass MM such that its maximum and minimum distances from the star are equal to r1r_1 and r2r_2 respectively. The angular momentum of the planet relative to the centre of the star is

A

m2GMr1r2r1+r2m \sqrt{\frac{2GM r_{1}r_{2}}{r_{1} + r_{2}} }

B

0

C

m2GM(r1+r2)41r2m \sqrt{\frac{2 G M\left(r_{1}+r_{2}\right)}{4_{1} r_{2}}}

D

m2GMmr1(r1+r2)r2m \sqrt{\frac{2GM m r_{1}}{(r_{1} + r_{2}) r_2 } }

Answer

m2GMr1r2r1+r2m \sqrt{\frac{2GM r_{1}r_{2}}{r_{1} + r_{2}} }

Explanation

Solution

According to the law of conservation of angular momentum, mV1I1=mV2I2m V_{1} I_{1} =m V_{2} I_{2} V2=V1r1r2\Rightarrow V_{2} =\frac{V_{1} r_{1}}{r_{2}} ......(i) From the law of conservation of total mechanical energy. GMmr1+12mv12=GMmr2+12mv22\frac{-G M m}{r_{1}}+\frac{1}{2} m v_{1}^{2}=-\frac{G M m}{r_{2}}+\frac{1}{2} m v_{2}^{2} ......(ii) From Eqs. (i) and (ii), we get V1=2GMr2(r1+r2)r1V_{1}=\sqrt{\frac{2 G M r_{2}}{\left(r_{1}+r_{2}\right) r_{1}}} Angular momentum, L=mv1r1=m(2GMr2(r1+r2)r1)×r1L=m v_{1} r_{1}=m\left(\sqrt{\frac{2 G M r_{2}}{\left(r_{1}+r_{2}\right) r_{1}}}\right) \times r_{1} L=m2GMr1I2r1+r2L=m \sqrt{\frac{2 G M r_{1} I_{2}}{r_{1}+r_{2}}}