Solveeit Logo

Question

Question: A planet of mass M has two natural satellites with masses $m_1$ and $m_2$ the radii of their circula...

A planet of mass M has two natural satellites with masses m1m_1 and m2m_2 the radii of their circular orbits are R1R_1 and R2R_2 respectively. Ignore the gravitational force between the satellites. Define V1,L1,U1V_1, L_1, U_1 and T1T_1 to be respectively, the escape velocity, angular momentum, potential energy and time period of revolution of satellite -1 and V2,L2,U2V_2, L_2, U_2 and T2T_2 to be the corresponding quantities of satellite-2.

Given m1m2=3\frac{m_1}{m_2}=3 and R1R2=19\frac{R_1}{R_2}=\frac{1}{9}. Match the ratios in List-I to the numbers in List-II.

List-IList-II
PV1V2\frac{V_1}{V_2}I3
QL1L2\frac{L_1}{L_2}II127\frac{1}{27}
RU1U2\frac{U_1}{U_2}III1
ST1T2\frac{T_1}{T_2}IV27
A

P \to I, Q \to III, R \to IV, S \to II

B

P \to III, Q \to I, R \to II, S \to IV

C

P \to I, Q \to II, R \to III, S \to IV

D

P \to IV, Q \to III, R \to I, S \to II

Answer

P \to I, Q \to III, R \to IV, S \to II

Explanation

Solution

For a satellite in a circular orbit around a planet of mass MM: Orbital velocity v=GMRv = \sqrt{\frac{GM}{R}}, so vR1/2v \propto R^{-1/2}. Escape velocity Ve=2GMRV_e = \sqrt{\frac{2GM}{R}}, so VeR1/2V_e \propto R^{-1/2}. Angular momentum L=mvr=mGMRR=mGMR1/2L = mvr = m \sqrt{\frac{GM}{R}} R = m \sqrt{GM} R^{1/2}, so LmR1/2L \propto m R^{1/2}. Potential energy U=GMmRU = -\frac{GMm}{R}, so UmR1U \propto m R^{-1}. Time period T=2πRv=2πRGM/R=2πGMR3/2T = \frac{2\pi R}{v} = \frac{2\pi R}{\sqrt{GM/R}} = \frac{2\pi}{\sqrt{GM}} R^{3/2}, so TR3/2T \propto R^{3/2}.

Given m1m2=3\frac{m_1}{m_2} = 3 and R1R2=19\frac{R_1}{R_2} = \frac{1}{9}.

P. V1V2\frac{V_1}{V_2}: V1V2R21/2R11/2=R2R1=9=3\frac{V_1}{V_2} \propto \frac{R_2^{1/2}}{R_1^{1/2}} = \sqrt{\frac{R_2}{R_1}} = \sqrt{9} = 3. Match: P \to I (3)

Q. L1L2\frac{L_1}{L_2}: L1L2=m1R11/2m2R21/2=m1m2R1R2=319=3×13=1\frac{L_1}{L_2} = \frac{m_1 R_1^{1/2}}{m_2 R_2^{1/2}} = \frac{m_1}{m_2} \sqrt{\frac{R_1}{R_2}} = 3 \sqrt{\frac{1}{9}} = 3 \times \frac{1}{3} = 1. Match: Q \to III (1)

R. U1U2\frac{U_1}{U_2}: U1U2=m1R11m2R21=m1m2R2R1=3×9=27\frac{U_1}{U_2} = \frac{m_1 R_1^{-1}}{m_2 R_2^{-1}} = \frac{m_1}{m_2} \frac{R_2}{R_1} = 3 \times 9 = 27. Match: R \to IV (27)

S. T1T2\frac{T_1}{T_2}: T1T2R13/2R23/2=(R1R2)3/2=(19)3/2=((13)2)3/2=(13)3=127\frac{T_1}{T_2} \propto \frac{R_1^{3/2}}{R_2^{3/2}} = \left(\frac{R_1}{R_2}\right)^{3/2} = \left(\frac{1}{9}\right)^{3/2} = \left(\left(\frac{1}{3}\right)^2\right)^{3/2} = \left(\frac{1}{3}\right)^3 = \frac{1}{27}. Match: S \to II (127\frac{1}{27})