Solveeit Logo

Question

Physics Question on Gravitation

A planet moves around the sun (mass = MsM_{s} ) in an elliptical orbit such that its minimum and maximum distance from the sun are rr and RR respectively. The period of revolution of this planet around the sun is

A

T=π(r+R)32GMsT=\pi \sqrt{\frac{\left(r + R\right)^{3}}{2 G M_{s}}}

B

T=π(r+R)33GMsT=\pi \sqrt{\frac{\left(r + R\right)^{3}}{3 G M_{s}}}

C

T=π(r+R)3GMsT=\pi \sqrt{\frac{\left(r + R\right)^{3}}{G M_{s}}}

D

T=π2(r+R)3GMsT=\pi \sqrt{\frac{2 \left(r + R\right)^{3}}{G M_{s}}}

Answer

T=π(r+R)32GMsT=\pi \sqrt{\frac{\left(r + R\right)^{3}}{2 G M_{s}}}

Explanation

Solution

The length of the semi-major axis of the elliptical orbit of the planet is a=r+R2a=\frac{r + R}{2} If we assume that there is a hypothetical planet which moves around the sun in a circular orbit of radius r0=r+R2r_{0}=\frac{r + R}{2} , then the time period of this hypothetical planet and our given planet will be same. The time period of a planet around the sun in circular orbit is T=2π(r3)0GMs=2π(r+R2)3GMsT=2\pi \sqrt{\frac{\left(r^{3}\right)_{0}}{G M_{s}}}=2\pi \sqrt{\frac{\left(\frac{r + R}{2}\right)^{3}}{G M_{s}}} T=π(r+R)32GMsT=\pi \sqrt{\frac{\left(r + R\right)^{3}}{2 G M_{s}}}