Solveeit Logo

Question

Physics Question on rotational motion

A planet is revolving around the Sun as shown in the figure. The radius vectors joining the Sun and the planet at points AA and BB are 90×106km90 \times 10^{6} km and 60×106km60 \times 10^{6} km, respectively. The ratio of velocities of the planet at the points AA and BB when its velocities make angle 3030^{\circ} and 6060^{\circ} with major-axis of the orbit is

A

323\frac{3}{2\sqrt{3}}

B

23\frac{2}{\sqrt{3}}

C

13\frac{1}{\sqrt{3}}

D

32\frac{\sqrt{3}}{2}

Answer

23\frac{2}{\sqrt{3}}

Explanation

Solution

According to the law of conservation of angular momentum, angular momentum (J)(J) of a planet is constant.

muArAsinθA=muBrBsinθB\Rightarrow m u_{A} r_{A} \sin \theta_{A}=m u_{B} r_{B} \sin \theta_{B}

or uAvB=rBrAsinθBsinθA \frac{u_{A}}{v_{B}}=\frac{r_{B}}{r_{A}} \frac{\sin \theta_{B}}{\sin \theta_{ A }}

Given, rA=90×106km,rB=60×106kmr_{A}=90 \times 10^{6} km , r_{B}=60 \times 10^{6} \,km

θA=30,θB=60\theta_{A}=30^{\circ}, \theta_{B}=60^{\circ}

or uAuB=60×10690×106×sin60sin30\frac{u_{A}}{u_{B}}=\frac{60 \times 10^{6}}{90 \times 10^{6}} \times \frac{\sin 60^{\circ}}{\sin 30^{\circ}}

4=23×3/21/24=\frac{2}{3} \times \frac{\sqrt{3} / 2}{1 / 2}

or uAuB=23 \frac{u_{A}}{u_{B}}=\frac{2}{\sqrt{3}}

Hence, the ratio of velocities of the planet is 232 \sqrt{3}