Solveeit Logo

Question

Question: A planet has twice the density of earth but the acceleration due to gravity on its surface is exactl...

A planet has twice the density of earth but the acceleration due to gravity on its surface is exactly the same as that on the surface of earth. Its radius in terms of earth R will be

A

R/4

B

R/2

C

R/3

D

R/8.

Answer

R/2

Explanation

Solution

We know that

g = GMR2\frac { \mathrm { GM } } { \mathrm { R } ^ { 2 } } = GR2[43πR3 d]\frac { \mathrm { G } } { \mathrm { R } ^ { 2 } } \left[ \frac { 4 } { 3 } \pi \mathrm { R } ^ { 3 } \mathrm {~d} \right]

where d = mean density of earth.

For planet

g′ = G(R)2×[43πR3( d)]\frac { \mathrm { G } } { \left( \mathrm { R } ^ { \prime } \right) ^ { 2 } } \times \left[ \frac { 4 } { 3 } \pi \mathrm { R } ^ { \prime 3 } ( \mathrm {~d} ) \right]

Given that g = g′

Therefore,

=GR2[43πR3 d]\frac { \mathrm { G } } { \mathrm { R } ^ { 2 } } \left[ \frac { 4 } { 3 } \pi \mathrm { R } ^ { 3 } \mathrm {~d} \right] = G(R)2×43πR3(2 d)\frac { \mathrm { G } } { \left( \mathrm { R } ^ { \prime } \right) ^ { 2 } } \times \frac { 4 } { 3 } \pi \mathrm { R } ^ { 3 } ( 2 \mathrm {~d} )

Solving we get, R′ = (R/2).

Therefore (2)