Solveeit Logo

Question

Question: A plane passing through (1, 1, 1) cuts positive direction of co-ordinate axes at A, B and C the volu...

A plane passing through (1, 1, 1) cuts positive direction of co-ordinate axes at A, B and C the volume of tetrahedron OABC satisfies-

A

V £92\frac { 9 } { 2 }

B

V ³92\frac { 9 } { 2 }

C

V = 92\frac { 9 } { 2 }

D

None of these

Answer

V ³92\frac { 9 } { 2 }

Explanation

Solution

Let the equation of the plane be + + = 1

Ž 1a\frac { 1 } { \mathrm { a } } + 1 b\frac { 1 } { \mathrm {~b} } += 1

Ž Volume of tetrahedron OABC = V = 16\frac { 1 } { 6 } (abc)

Now (abc)1/3 ³ ³ 3

Ž abc ³ 27

Ž V ³