Solveeit Logo

Question

Question: A plane passes through a fixed point \((p,q,r)\) and cut the axes in A,B,C. Then the locus of the ce...

A plane passes through a fixed point (p,q,r)(p,q,r) and cut the axes in A,B,C. Then the locus of the centre of the sphere OABCOABC is

A

px+qy+rz=2\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2

B

px+qy+rz=1\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 1

C

px+qy+rz=3\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 3

D

None of these

Answer

px+qy+rz=2\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2

Explanation

Solution

Let the co-ordinates of A, B and C be (a,0,0), (0,b,0) and (0,0,c) respectively.

The equation of the plane is xa+yb+zc=1\frac { x } { a } + \frac { y } { b } + \frac { z } { c } = 1

Also, it passes through (p, q, r). So,pa+qb+zc=1\frac { p } { a } + \frac { q } { b } + \frac { z } { c } = 1

Also equation of sphere passes through A, B, C will be x2+y2+z2axbycz=0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - a x - b y - c z = 0

If its centre (x1,y1,z1)\left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right), then x1=a2,y1=b2,z1=c2x _ { 1 } = \frac { a } { 2 } , y _ { 1 } = \frac { b } { 2 } , z _ { 1 } = \frac { c } { 2 }

a=2x1,b=2y1,c=2z1a = 2 x _ { 1 } , b = 2 y _ { 1 } , c = 2 z _ { 1 }

∴ Locus of centre of sphere px+qy+rz=2\frac { p } { x } + \frac { q } { y } + \frac { r } { z } = 2.