Solveeit Logo

Question

Question: A plane mirror is placed at the origin so that the direction ratios of its normal are 1, –1, 1. A ra...

A plane mirror is placed at the origin so that the direction ratios of its normal are 1, –1, 1. A ray of light, coming along the positive direction of the x-axis, strikes the mirror. The direction cosines of the reflected ray are

A

13,23,23\frac { 1 } { 3 } , \frac { 2 } { 3 } , \frac { 2 } { 3 }

B

13,23,23\frac { 1 } { 3 } , \frac { 2 } { 3 } , \frac { 2 } { 3 }

C

13,23,23- \frac { 1 } { 3 } , - \frac { 2 } { 3 } , - \frac { 2 } { 3 }

D

13,23,23- \frac { 1 } { 3 } , - \frac { 2 } { 3 } , \frac { 2 } { 3 }

Answer

13,23,23- \frac { 1 } { 3 } , - \frac { 2 } { 3 } , \frac { 2 } { 3 }

Explanation

Solution

If θ is the angle between the normal to the plane and the incident ray, then

cos θ = 13\frac { 1 } { \sqrt { 3 } } . If l, m, n are the d.c of the reflected ray, then

1+2cosθ=13\frac { 1 + \ell } { 2 \cos \theta } = \frac { 1 } { \sqrt { 3 } } , 0+m2cosθ=13\frac { 0 + m } { 2 \cos \theta } = - \frac { 1 } { \sqrt { 3 } } and 0+n2cosθ=13\frac { 0 + n } { 2 \cos \theta } = \frac { 1 } { \sqrt { 3 } }

⇒ l = – 13\frac { 1 } { 3 } , m = – 23\frac { 2 } { \sqrt { 3 } }, n = 23\frac { 2 } { 3 }