Solveeit Logo

Question

Question: A plane meets the co-ordinate axes in \(A,B,C\) and \((\alpha,\beta,\gamma)\) is the centered of the...

A plane meets the co-ordinate axes in A,B,CA,B,C and (α,β,γ)(\alpha,\beta,\gamma) is the centered of the triangle ABCABC. Then the equation of the plane is

A

xα+yβ+zγ=3\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3

B

xα+yβ+zγ=1\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1

C

3xα+3yβ+3zγ=1\frac{3x}{\alpha} + \frac{3y}{\beta} + \frac{3z}{\gamma} = 1

D

αx+βy+γz=1\alpha x + \beta y + \gamma z = 1

Answer

xα+yβ+zγ=3\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3

Explanation

Solution

Let the co-ordinates of the points where the plane cuts the axes are (a, 0, 0), (0, b, 0), (0, 0, c). Since centroid is (α,β,γ)( \alpha , \beta , \gamma ) therefore a=3αa = 3 \alpha b=3β,c=3γb = 3 \beta , c = 3 \gamma

Equation of the plane will be xa+yb+zc=1\frac { x } { a } + \frac { y } { b } + \frac { z } { c } = 1