Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

A plane makes intercepts a,b,ca, b, c at A,B,CA, B, C on the coordinate axes respectively. If the centroid of the ΔABC\Delta ABC is at (3,2,1)(3, 2, 1), then the equation of the plane is

A

x+2y+3z=9x+2y+3z=9

B

2x3y6z=182x-3y-6z=18

C

2x+3y+6z=182x+3y+6z=18

D

2x+y+6z=182x+y+6z=18

Answer

2x+3y+6z=182x+3y+6z=18

Explanation

Solution

Coordinates of A, B and C are (a, 0, 0), (0, b, 0) and (0, 0, c) respectively Since, centroid of ΔABC\Delta ABC is (3, 2, 1).
\therefore a+0+03=3\frac{a+0+0}{3}=3
\Rightarrow a=9a=9 And 0+b+03=2\frac{0+b+0}{3}=2
\Rightarrow b=6b=6 And 0+0+c3=1\frac{0+0+c}{3}=1
\Rightarrow c=3c=3
\therefore Equation of required plane is xa+yb+zc=1\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
\Rightarrow x9+y6+z3=1\frac{x}{9}+\frac{y}{6}+\frac{z}{3}=1
\Rightarrow 2x+3y+6z=182x+3y+6z=18