Solveeit Logo

Question

Question: A plane is parallel to two lines whose direction ratios are (1, 0, -1) and (-1, 1, 0) and it contain...

A plane is parallel to two lines whose direction ratios are (1, 0, -1) and (-1, 1, 0) and it contains the point (1, 1, 1). If it cuts the co-ordinate axes at A, B, C then the volume of tetrahedron OABC is ..........c.u., Unit

A

27

B

9

C

92\frac{9}{2}

D

94\frac{9}{4}

Answer

92\frac{9}{2}

Explanation

Solution

Solution:

  1. For a plane parallel to the lines with direction ratios (1, 0, –1) and (–1, 1, 0), its normal vector n must satisfy:

    n(1,0,1)=0AC=0A=C,n \cdot (1,0,-1)=0 \quad\Rightarrow\quad A-C=0\quad\Rightarrow\quad A=C,

    n(1,1,0)=0A+B=0B=A.n \cdot (-1,1,0)=0 \quad\Rightarrow\quad -A+B=0\quad\Rightarrow\quad B=A.

    Thus, n=(A,A,A)n = (A, A, A) or simply (1,1,1)(1,1,1).

  2. The equation of the plane is:

    x+y+z=d.x + y + z = d.

    Since the plane passes through (1, 1, 1):

    1+1+1=dd=3.1+1+1 = d \quad\Rightarrow\quad d=3.

    Hence, the equation is:

    x+y+z=3.x+y+z=3.

  3. The intercepts on the axes are:

    A:(3,0,0),B:(0,3,0),C:(0,0,3).A: (3, 0, 0),\quad B: (0, 3, 0),\quad C: (0, 0, 3).

  4. The volume of tetrahedron OABC is given by:

    V=16OAOBOC=16×3×3×3=276=92.V=\frac{1}{6}\,|OA\cdot OB\cdot OC|=\frac{1}{6}\times3\times3\times3=\frac{27}{6}=\frac{9}{2}.

Answer:

92\frac{9}{2} (Option c)


Explanation (minimal):

Normal vector is (1,1,1) ⇒ Plane: x+y+z=3.
Intercepts: (3,0,0), (0,3,0), (0,0,3).
Volume = (1/6)(3×3×3) = 9/2.