Solveeit Logo

Question

Question: A plane electromagnetic wave travelling in a non-magnetic medium is given by \[ E = \left( {9 \tim...

A plane electromagnetic wave travelling in a non-magnetic medium is given by

E=(9×108NC1)sin[(9×108rads1)t(6m1)x]E = \left( {9 \times 10^8 \,NC^{ - 1} } \right)\sin \left[ {\left( {9 \times 10^8 \,rad\,s^{ - 1} } \right)t - \left( {6\,m^{ - 1} } \right)x} \right]

where x is in meters and t is in second. What will be the dielectric constant of the medium?
A. 5
B. 4
C. 3
D. 2

Explanation

Solution

compare the given equation of electric field with the standard equation of electric field of the electromagnetic wave.

Formula used:
c=ωkc = \dfrac{\omega }{k}

Here, ω\omega is the angular frequency and k is the dielectric constant of the medium.
c=1μεc = \dfrac{1}{{\sqrt {\mu \varepsilon } }}

Here, μ\mu is the permeability of the free space and ε\varepsilon is the dielectric constant of the air.

Complete step by step answer:
The electric field of the electromagnetic wave is given by the equation,E=E0sin(ωtkx)E = E_0 \sin \left( {\omega t - kx} \right) ...... (1)

Here, E0E_0 is the initial electric field, ω\omega is the angular frequency, t is the time, k is the wave number, and x is the distance.

The given equation of the electric field is,E=(9×108NC1)sin[(9×108rads1)t(6m1)x]E = \left( {9 \times 10^8 \,NC^{ - 1} } \right)\sin \left[ {\left( {9 \times 10^8 \,rad\,s^{ - 1} } \right)t - \left( {6\,m^{ - 1} } \right)x} \right]

Compare the above equation with the standard equation of electric field of the electromagnetic wave (1). We get,
ω=9×108rads1\omega = 9 \times 10^8 \,rad\,s^{ - 1} and k=6m1k = 6\,m^{ - 1} .

The speed of propagation of the wave is given by,
c=ωkc = \dfrac{\omega }{k}
Substitute 9×108rads19 \times 10^8 \,rad\,s^{ - 1} for ω\omega and 6m16\,m^{ - 1} for kk in the above equation.
c=9×108rads16m1c = \dfrac{{9 \times 10^8 \,rad\,s^{ - 1} }}{{6\,m^{ - 1} }}

c=1.5×108ms1c = 1.5 \times 10^8 \,ms^{ - 1}

Also, the speed of electromagnetic wave in a dielectric medium of permittivity ε\varepsilon is given by the equation,
c=1μεc = \dfrac{1}{{\sqrt {\mu \varepsilon } }}

Here, μ\mu is the permeability of the medium and ε\varepsilon is the permittivity of the medium.

Therefore, we can write,
1με=1.5×108ms1\dfrac{1}{{\sqrt {\mu \varepsilon } }} = 1.5 \times 10^8 \,ms^{ - 1}

Squaring the above equation, we get,
1με=2.25×1016m2s2\dfrac{1}{{\mu \varepsilon }} = 2.25 \times 10^{16} \,m^2 s^{ - 2}

ε=12.25×1016m2s2×μ \Rightarrow \varepsilon = \dfrac{1}{{2.25 \times 10^{16} \,m^2 s^{ - 2} \times \mu }}

Substitute 4π×107TmA14\pi \times 10^{ - 7} \,TmA^{ - 1} for μ\mu in the above equation.
ε=12.25×1016×4π×107\Rightarrow \varepsilon = \dfrac{1}{{2.25 \times 10^{16} \times 4\pi \times 10^{ - 7} }}

ε=128.26×109\varepsilon = \dfrac{1}{{28.26 \times 10^9 }}

ε=0.035×109Fm1\varepsilon = 0.035 \times 10^{ - 9} \,Fm^{ - 1}

The dielectric constant of the medium is given by,
k=εε0k = \dfrac{\varepsilon }{{\varepsilon _0 }}

Here, ε0\varepsilon _0 is the permittivity of the free space and it has value 8.85×1012Fm18.85 \times 10^{ - 12} \,Fm^{ - 1} .

Substitute 0.035×109Fm10.035 \times 10^{ - 9} \,Fm^{ - 1} for ε\varepsilon and 8.85×1012Fm18.85 \times 10^{ - 12} \,Fm^{ - 1} for ε0\varepsilon _0 in the above equation.k=0.035×109Fm18.85×1012Fm1k = \dfrac{{0.035 \times 10^{ - 9} \,Fm^{ - 1} }}{{8.85 \times 10^{ - 12} \,Fm^{ - 1} }}

k=3.95k = 3.95

Therefore, the dielectric constant is nearly 4.

So, the correct answer is “Option B”.
Note:
Remember, the units of permittivity of the medium and permeability of the medium are in S.I. units. Also use 1T=kgs2A11\,T = kg\,s^{ - 2} A^{ - 1}
wherever necessary if you don’t remember the units of the above-mentioned parameters.